Text, tables, imaqges and sound

Immanuel Trummer

/ll MANNING

Overview of Mini-Projects

Audio Transcribing speech recordings to text
Answering voice queries about tabular data

Translating speech to another language

Graphs Translating questions about graphs to Cypher queries

Images Answering arbitrary questions about images

Recognizing and tagging specific persons in images

Multimodal | Extracting information from multimodal data

Building an autonomous agent for data analysis

Tables Translating natural language questions to SQL

Text Classifying product reviews by the underlying sentiment
Extracting key information from application materials

Clustering text documents by their content

Videos Generating titles for videos based on content

Data Analysis
with LLMs

Text, tables, ymages and sound

IMMANUEL TRUMMER

MANNING
SHELTER ISLAND

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.

20 Baldwin Road

PO Box 761

Shelter Island, NY 11964
Email: orders@manning.com

©2025 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

Manning Publications Co. Development editor: Dustin Archibald

20 Baldwin Road Technical editor: Timothy Andrew Roberts
PO Box 761 Review editor: Kishor Rit

Shelter Island, NY 11964 Production editor: Keri Hales

Copy editor: Tiffany Taylor
Proofreader: Melody Dolab
Technical proofreader: Karsten Strgbaek
Typesetter: Ammar Taha Mohamedy
Cover designer: Marija Tudor

ISBN 9781633437647
Printed in the United States of America

www.manning.com
orders@manning.com

To my beloved family

brief contents

PART 1 INTRODUCING LANGUAGE MODELS ..uuueiiiiiaeeeeiaaeeeanannns 1

1 Analyzing data with large language models 2
2 Chatting with ChatGPT 17

PART 2 DATA ANALYSIS WITH LANGUAGE MODELSc.cuenu...... 37
3 The OpenAl Python library 38

4 Analyzing text data 52
5 Analyzing structured data 76
6 Analyzing images and videos 101
7 Analyzing audio data 120
PART 3 ADVANCED TOPICSouuiiiiniiiiniiiiiiiieiiieiiieeiieeiann, 141

8 GPT alternatives 142
9 Optimizing cost and quality 156
10 Software frameworks 183

iv

contents

preface ix

PArT 1 INTRODUCING LANGUAGE MODELS

acknowledgments xi

about this book xii

about the author xv

about the cover illustration xuvi

Analyzing data with large language models 2

1.1
1.2
1.3

1.4

1.5

1.6

What can language models do? 2
What you will learn 4
How to use language models 6
Prompting 6 = Example prompt 7 = Interfaces 8
Using language models for data analysis 8

Using language models directly on data 9 = Data analysis via
external tools 10

Minimizing costs 12
Picking the best model 13 = Optimally configuring models 14
Prompt engineering 15

Advanced software frameworks and agents 15

Chatting with ChatGPT 17
2.1 Accessing the web interface 18

2.2

Making introductions 19

vi CONTENTS

2.3 Processing text with ChatGPT 21
2.4 Processing tables with ChatGPT 27

Processing tables in the web interface 28 = Processing tables on
your platform 30

PART 2 DATA ANALYSIS WITH LANGUAGE MODELS

The OpenAl Python library 38

3.1 Prerequisites 39

3.2 Installing OpenAl’s Python library 40

3.3 Listing available models 42

3.4 Chat completion 43

3.5 Customizing model behavior 46
Configuring termination conditions 46 = Configuring output
generation 47 = Configuring randomization 48
Customization example 49 = Further parameters 51

Analyzing text data 52

4.1 Preliminaries 53

4.2 Classification 53
Overview 54 = Creating prompts 55 = Calling the
model 56 = End-to-end classification code 57 = Classifying
documents 59 = Running the code 59 = Trying out
variants 60

4.3 Text extraction 61
Overview 62 = Generaling prompts 63 = Postprocessing 64
End-to-end extraction code 66 Trying it out 68

4.4 Clustering 69
Overview 70 = Calculating embeddings 70 = Clustering
vectors 72 = End-to-end code for text clustering 72 = Trying
itout 74 = Other use cases for embedding vectors 74

Analyzing structured data 76

5.1 Chapter outline 77

5.2 A natural language query interface for
analyzing game sales 78
Setting up an SQLite database 79 = SQL basics 81
Overview 83 = Generating prompts for text-to-SQL
translation 83 = Complete code 84 = Trying it out 86

5.3 Ageneral natural language queryinterface 87
Executing queries 87 = Extracting the database structure 88
Complete code 89 = Trying it out 91

CONTENTS vii

5.4 A natural language query interface for graph data 93
What is graph data? 93 = Setting up a Neodj database 94
The Cypher query language 95 = Translating questions to
Cypher queries 97 = Generating prompts 97 = Complete
code 98 = Trying it out 100

Analyzing images and videos 101

6.1 Setup 102

6.2 Answering questions aboutimages 102
Specifying multimodal input 103 = Code discussion 104
Trying it out 105

6.3 Tagging people in images 106
Overview 107 = Encoding locally stored images 107
Sending locally stored images to OpenAl 109 = The end-to-end
implementation 111 = Tryingitout 113

6.4 Generating titles for videos 114
Overview 114 = Encoding video frames 115 = The
end-to-end implementation 116 = Trying it out 118

Analyzing audio data 120

7.1 Preliminaries 121

7.2 Transcribing audio files 122
Transcribing speech 122 = End-to-end code 123 = Trying it
out 124

7.3 Querying relational data via voice 124
Preliminaries 125 = Overview 125 = Recording audio 126
End-to-end code 127 = Trying it out 131

7.4 Speech-to-speech translation 132
Overview 132 = Generating speech 133 = End-to-end
code 134 = Tryingitout 137

PART 3 ADVANCED TOPICS uuuueeeteee e e e 141

GPT alternatives 142
8.1 Anthropic 143
Chatting with Claude 144 = Python library 144
8.2 Cohere 146
Chatting with Command R+ 146 = Python library 147
8.3 Google 149
Chatting with Gemini 149 = The Python library 150
8.4 Hugging Face 151
Web platform 151 = Python library 153

CONTENTS

Optimizing cost and quality 156

9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8
9.9
9.10

Example scenario 157

Untuned classifier 158

Model tuning 160

Model selection 164

Prompt engineering 166
Tunable classifier 169
Fine-tuning 173

Generating training data 175
Starting a fine-tuning job 177
Using the fine-tuned model 179

Software frameworks 183

10.1
10.2

10.3

10.4

10.5

10.6

10.7

LangChain 184
Classifying reviews with LangChain 185
Overview 185 = Creating a classification chain 186
Putting it together 187 = Trying it out 188
Agents: Putting the large language model
into the driver’s seat 189
Building an agent for data analysis 192
Overview 192 = Creating an agent with LangChain 193
Complete code for data-analysis agent 194 = Trying it
out 195
Adding custom tools 198
The currency converter 199 = Trying it out 201
Indexing multimodal data with Llamalndex 203
Overview 203 = Installing Llamalndex 204 = Implementing
a simple question-answering system 205 = Trying it out 206
Concluding remarks 206

index 209

preface

Using a large language model for the first time is an almost magical experience. I
still remember my first chat with GPT-3 (nowadays an outdated model). For the first
time, it seemed to me that my computer actually understood me and could react
appropriately to a wide range of complex inputs. What’s more, I gave it various tasks,
ranging from text analysis to coding, and the model was able to solve them based
on my instructions alone! I was used to a world in which neural networks had to be
trained for highly specialized tasks using large amounts of task-specific training data
that had to be labeled tediously by hand, so this was an absolute game-changer that
opened a world of new and exciting possibilities.

I was hooked, and since then I have dedicated a large portion of my professional
career to exploiting the amazing capabilities of language models. Coming from
a data-analysis background, it was natural for me to look at language models
from a data-analysis perspective. How can we use language models to make the
most of our data sets? Since I started using language models, a big change has been
the types of data to which language models can be applied. Starting with text analysis,
modern models have expanded their scope to multimodal inputs including images,
audio, video, and text. This makes them an invaluable tool for any kind of data
science, allowing users to build complex analysis pipelines with just a few lines of
Python code along with instructions for the model in natural language describing
the task to solve.

In my work, I regularly meet data scientists and data workers who could benefit
tremendously from the possibilities offered by language models. However, getting
into this new area can be challenging.

ix

PREFACE

I had to rely on blog posts and online tutorials to piece together the information
I needed to use language models for various data-analysis tasks. This is the book I
wish I’d had when I started my journey. I hope you will find the book useful and
enjoyable!

acknowledgments

Thanks to the editorial staff at Manning, as well as to the behind-the-scenes production
staff who helped shepherd this book into its final format. In addition, thanks to
Timothy Andrew Roberts, the technical editor for this book.

Also, thanks to all the reviewers: Al Pezewski, Amitabh Premraj Cheekoth, Anindita
Nath, Anto Aravinth, Brendan O’Hara, Clemens Baader, Darrin Bishop, Dotan
Cohen, Eli Mayost, George E. Carter, Giri Swaminathan, Harcharan Kabbay, Ike-
chukwu Okonkwo, Jaume Valls Altadil, Jeremy Chen, John Guthrie, John V. McCarthy,
John Williams, Krzysztof Jydrzejewski, Lex Drennan, Marcio Francisco Nogueira,
Marjorie Roswell, Marvin Schwarze, Paul Silisteanu, Rahul Jain, Robert Rozploch,
Sumit Bhattacharyya, Swapna Yeleswarapu, Thiago Britto Borges, Todd Cook, Tony
Holdroyd, Vatsal Desai, Vinoth Nageshwaran, and Walter Alexander Mata Lépez.
Your suggestions helped make this a better book.

xi

about this book

This book was written to help developers build applications for multimodal data
analysis using state-of-the-art language models. It introduces language models and
the most important libraries for using them in Python. Via a series of mini projects,
it showcases how to use language models to analyze text, tabular data, graph data,
images, videos, and audio files. By discussing topics such as prompt engineering,
fine-tuning, and advanced software frameworks, the book will enable you to quickly
build complex data-analysis applications with language models that are effective and
cost-efficient.

Who should read this book?

Whether you are a software developer, data scientist, or hobbyist interested in data
analysis, this book is for you if you want to exploit the powerful abilities of large
language models to perform various types of data analysis. Prior experience with
language models is unnecessary, as the book covers all the basics. However, experience
with Python is helpful, atleast at a beginner’s level, as this book uses Python to interact
with language models.

How this book is organized: A road map
This book has 10 chapters in three parts. Part 1 introduces language models and
gives a first impression of their benefits for data analysis:
Chapter 1 introduces language models and explains how they can be used for
data analysis.
Chapter 2 guides you through a chat with ChatGPT, illustrating the analysis of
text and tabular data in the ChatGPT web interface.

xii

ABOUT THIS BOOK xiii

Part 2 introduces OpenAl’s Python library and shows how to analyze various types of
data using language models directly from Python:

Chapter 3 introduces OpenAl’s Python library, enabling users to send requests
to language models and configure their behavior in various ways.

Chapter 4 shows how to use language models to process text data: for example,
to classify text documents or extract specific information.

Chapter 5 demonstrates how to build natural language query interfaces using
language models, translating questions in natural language to formal queries
referring to data tables or graphs.

Chapter 6 describes how to use multimodal language models to process ima-
ges or video data for tasks such as object detection, question-answering, and
captioning.

Chapter 7 illustrates multiple use cases for language models in analyzing audio
data: for instance, transcribing audio recordings, realizing voice query interfaces,
or translating spoken input to other languages.

Part 3 covers advanced topics, enabling you to optimize your choice of models,
configurations, and frameworks:

Chapter 8 discusses different providers of large language models and gives a
short overview of the models they offer and the corresponding Python libraries.
Chapter 9 demonstrates methods that can be used to minimize processing fees
and maximize output quality when working with language models, including
optimizing model choices and parameter settings and fine-tuning.

Chapter 10 discusses several software frameworks, particularly LangChain and
Llamalndex, that can be used to build complex applications on top of large
language models with lower implementation overheads.

It is recommended that you start by reading chapter 1, which introduces important
terms and concepts. You can skip chapter 2 if you have already used language models
via web interfaces. Most of the remaining chapters are based on OpenAI’s Python
library. It is therefore a good idea to read chapter 3 before diving into any later
chapters. Chapters 4 to 7 focus on different data types and can be read in any order.
Similarly, chapters 8 to 10 are independent, and you can study them in any order.

About the code

This book contains various code samples in numbered and unnumbered listings.
All code in numbered listings is available for download from the book’s companion
website at www.dataanalysiswithllms.com. Code, as well as suitable test data, is catego-
rized by book chapter. Code files are named using the number of the corresponding
listing in the book. The entire code and data repository can also be downloaded
from the publisher’s website at www.manning.com/books/data-analysis-with-llms.
The source code is formatted in a fixed-width font like this to separate it
from ordinary text. In many cases, the original source code has been reformatted;

www.dataanalysiswithllms.com
https://www.manning.com/books/data-analysis-with-llms

ABOUT THIS BOOK

we’ve added line breaks and reworked indentation to accommodate the available
page space in the book. Additionally, comments in the source code have often been
removed from the listings when the code is described in the text. Code annotations
accompany many of the listings, highlighting important concepts.

liveBook discussion forum

Purchase of Data Analysis with LLMsincludes free access to liveBook, Manning’s online

reading platform. Using liveBook’s exclusive discussion features, you can attach com-
ments to the book globally or to specific sections or paragraphs. It’s a snap to make

notes for yourself, ask and answer technical questions, and receive help from the au-
thor and other users. To access the forum, go to https://livebook.manning.com/book/
data-analysis-with-Ilms/discussion. You can also learn more about Manning’s forums

and the rules of conduct at https://livebook.manning.com/discussion.

Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the author can take
place. It is not a commitment to any specific amount of participation on the part
of the author, whose contribution to the forum remains voluntary (and unpaid).
We suggest you try asking the author some challenging questions lest his interest
stray! The forum and the archives of previous discussions will be accessible from the
publisher’s website as long as the book is in print.

https://livebook.manning.com/book/data-analysis-with-llms/discussion
https://livebook.manning.com/book/llms-in-action/discussion
https://livebook.manning.com/discussion

about the author

IMMANUEL TRUMMER is an associate professor of computer science at Cornell Uni-
versity. His research focuses on topics at the intersection of data analysis and ma-
chine learning. In particular, he studies applications of large language models to
data-analysis problems, resulting in various award-winning publications and industry
collaborations. His video tutorials have obtained over a million views on YouTube.
Besides working with language models, Immanuel enjoys playing the violin, exploring
the beautiful outdoors in upstate New York, and spending as much time as possible

with his family.

XV

about the cover illustration

The figure on the cover of Data Analysis with LLMs, titled “Le Spéculateur,” or
“The Speculator,”is taken from a book by Louis Curmer published in 1841. Each
illustration is finely drawn and colored by hand.

In those days, it was easy to identify where people lived and what their trade
or station in life was just by their dress. Manning celebrates the inventiveness and
initiative of the computer business with book covers based on the rich diversity of
regional culture centuries ago, brought back to life by pictures from collections such
as this one.

xvi

Part 1

Introducing language models

So what are language models, exactly? And how can we use them for data analysis?
This part of the book answers both those questions.

In chapter 1, we discuss the principles underlying language models and what
makes them special. We also discuss all the different ways in which language models
can be used for data analysis, covering options to use them directly on data as well as
the possibility of using them as interfaces to more specialized data-analysis tools.

In chapter 2, we have a “chat” with ChatGPT: that is, we interact with a popular
language model by OpenAl. We witness the flexibility of ChatGPT when performing a
variety of tasks on text, ranging from text classification to extracting specific pieces of
information from text based on a concise task description. We also see that ChatGPT
does well when translating questions about data, formulated in natural language, to
formal query languages such as SQL.

After reading this part, you should have a good understanding of what language
models are and how you can use them for data analysis.

1.1

Analyzing data with
large language models

This chapter covers

= An introduction to language models
= Data analysis with language models
= Using language models efficiently

Language models are powerful neural networks that can be used for various data-
processing tasks. This chapter introduces language models and shows how and why
to use them for data analysis.

What can language models do?

We will start this section with a little poem and an associated picture (figure 1.1)
connecting the two main topics of this book, data analysis and large language models:

In the silent hum of the server’s light,
Data flows through the veins of night.
Rows and columns, a structured sea,
With stories hidden, waiting to be free.

1.1 What can language models do? 3

Each number sings of pasts untold,
Trends and truths in patterns bold.
And here arrives a curious friend,

A language model, eager to comprehend.

1t listens close, with circuits keen,

To turn raw facts into insight unseen.
From scatter plots to sentences clear,
Data’s language is all it can hear.

The figures dance, the texts reply,

As code meets meaning under Al’s eye.
They merge their worlds, a seamless blend,
Where logic and language have no end.

For in this bond, both deep and wide,
Data’s essence finds a guide.

And in the neural net’s embrace,
Data analysis gains a poetic grace.

Figure 1.1 Illlustration by GPT-40, connecting the topics “data analysis” and “large language models”

The poem and the picture were generated by GPT-40 (“o” for “omni”), a language
model by OpenAl that processes multimodal data, based solely on the instructions
“Write a poem connecting data analysis and large language models!” followed by

“Now draw a corresponding picture!” Both the picture and the poem seem to relate

1.2

CHAPTER 1 Analyzing data with large language models

to the requested topics. Although the poem may not win any literature awards, its
text is coherent, it is structured as we would expect from a poem, and it rhymes!
Perhaps most importantly, all it took to generate the poem and the picture were
short instructions expressed in natural language. Whereas prior machine learning
methods relied on large amounts of task-specific training data, this requirement is
now obsolete. And, of course, the task is specific enough to convince us that the
language model is not copying existing solutions from the web and generates original
content instead.

Writing poems and generating pictures are only two of many possible use cases
(albeit possibly the most entertaining ones). Models like GPT-40 can solve various
tasks, such as summarizing text documents, writing program code, and answering
questions about pictures. In this book, you will learn how to use language models
to accomplish a plethora of data-analysis tasks ranging from extracting information
from large collections of text documents to writing code for data analysis. After
reading this book, you will be able to quickly build data-analysis pipelines that are
based on language models and extract useful insights from a variety of data formats.

What does GPT stand for?
GPT stands for Generative Pretrained Transformer.

Generative: GPT is a large neural network that generates content (e.g., text or code)
in response to input text. This fact distinguishes it from other neural networks that,
for example, can only classify input text into a fixed set of predefined categories.

Pretrained: GPT is pretrained on large amounts of data, solving generic tasks such
as predicting the next word in text. Typically, the pretraining task is different from the
tasks it is primarily used for. However, pretraining helps it learn more specialized
tasks faster.

The Transformer is a new neural network architecture that is particularly useful for
learning tasks that involve variable-length input or output (such as text documents).
It is currently the dominant architecture for generative Al approaches.

What you will learn

This book is about using language models for data analysis. We can categorize data-
analysis tasks by the type of data we’re analyzing and by the type of analysis. This
book covers a wide range of data types and analysis tasks.

We focus on multimodal data analysis: that is, we use language models to analyze
various types of data. More precisely, we cover the following data types in this book:

Text—Think of emails, newspaper articles, and comments on a web forum. Text
data is ubiquitous and contains valuable information. In this book, we will see
how to use language models to automatically classify text documents based on

1.2 What you will learn 5

their content, how to extract specific pieces of information from text, and how
to group text documents about related topics.

Images—A picture is worth a thousand words, as they say. Images help us to
understand complex concepts, capture fond memories of our last holiday, and
illustrate current events. Language models can easily extract information from
pictures. For instance, we will use language models to answer arbitrary questions
about images or identify people who appear in pictures based on a database of
profiles.

Videos—A large percentage of the data on the web is video data. Even on your
smartphone, video data is probably taking up a significant part of your phone’s
total storage capacity. In this book, we will see that language models can be
applied to analyze videos as well: for instance, to generate suitable video titles
based on the video content.

Audio—To many people, speech is the most natural form of communication.
Audio recordings capture speeches and conversations and complement videos.
In this book, we will see how to transcribe audio recordings, how to translate
spoken language into other languages, and how to build a query interface that
answers spoken questions about data.

Tables—Imagine a data set containing information about customers. It is natural
to represent that data as a table, featuring columns for the customer’s address,
phone number, and credit card information, while different rows store infor-
mation about different customers. In this book, we will see how to use language
models to write code that performs complex operations on such tabular data.

Graphs—From social networks to metro networks, many data sets are conven-
iently represented as graphs, modeling entities (such as people or metro stations)
and their connections (representing friendships or metro connections). We
will see how we can use language models to generate code that analyzes large
graphs in various ways.

Structured vs. unstructured data

Data types are often categorized into two groups: structured and unstructured data.
Structured data has a structure that facilitates efficient data processing via specia-
lized tools. Examples of structured data include tables and graph data. For such
data, we typically use the language model as an interface to specialized data-
processing tools. Unstructured data, including text, images, videos, and audio files,
does not have a structure that can be easily exploited for efficient processing. So,
for unstructured data, we typically need to use the language model directly on the
data.

For most of this book, we will use OpenAl models via OpenAl’s Python library. Toward
the end of the book, we will also discuss language models from other providers. As

1.3

1.3.1

CHAPTER 1 Analyzing data with large language models

libraries from different providers tend to offer similar functionality, getting used to
other models shouldn’t take long.

Typically, using language models incurs monetary fees proportional to the amount
of data being processed. The fees depend on the language model used, the model
configuration, and the way in which the input to the language model is formulated.
In this book, not only will you learn to solve various data-analysis tasks via language
models, but we will discuss how to do so with minimal costs.

How to use language models

State-of-the-art language models are used via a method called prompting. We discuss
prompting next, followed by the interfaces we can use for prompting.

Prompting

Until a few years ago, machine learning models were trained for one specific task.
For instance, we might have a model trained to classify the text of a review as either
“positive” (i.e., the review author is satisfied) or “negative” (i.e., the author is dissatis-
fied). To use that model, we only need the review text as input. There’s no need to
describe the task (classifying the review) as part of the input because the model has
been specialized to do that task and that task only.

This has changed in recent years with the emergence of large language models
such as GPT. Such models are no longer trained for specific tasks. Instead, they are
intended to serve as universal task solvers that can, in principle, solve any task the
user desires. When using such a model, it is up to the user to describe to the model
in precise terms what the model should do.

The prompt is the input to the language model. The prompt can contain multimo-
dal data: for example, text and images. At a minimum, to get the language model to
solve a specific task, the prompt should contain a text instructing the model on what
to do. Beyond those instructions, the prompt should contain all relevant context.
For instance, if the instructions ask the model to determine whether a car is visible in
a picture, the prompt must also contain the picture. The instructions in the prompt
should be specific and clarify, for instance, the expected output format. For example,
if we want the model to output “1” if a car is present and “0” otherwise, enabling us
to easily add the numbers generated by the model to count cars, we need to explicitly
clarify that in the prompt (otherwise, the model might answer “Yes, there is a car in
the picture,” which makes it harder to count in the post-processing stage). Besides
instructions and context, the prompt may contain examples to help the language
model understand the task.

Few-shot vs. zero-shot learning

We can help the language model better understand a task by providing examples
as part of the prompt. Those examples are similar to the task we want the model

1.3.2

1.3 How to use language models 7

to solve and specify the input and desired output. This approach is sometimes
called few-shot learning, as the model learns the task based on a few samples. On
the other hand, we can use zero-shot learning, meaning the model learns the task
without any (zero) samples based only on the task description.

Example prompt
Let’s illustrate prompts with an example. A classical use case for language models is
analyzing product reviews to determine the sentiment underlying the review: whether
the review is positive (i.e., the customer recommends the product) or negative (i.e.,
the customer is unhappy with the product). Assume that we have a review to classify
as positive or negative. If we have a specialized model trained for review classification
for the specific product category we’re interested in, all it takes is to send our review
to that model. As the model is specialized to the target problem, it already “knows”
what to do with the input and the required output format. However, because we use
large language models, we have to provide a bit more context along with the review.
Our prompt should contain all relevant information for the model, describing the
task to solve and all context. In the example scenario, we probably want to include
the following pieces of information:

Review text—The text of the review we want to classify.

Task description—A description of the task to solve.

Output formats—What is the required output format?

Relevant context—For example, are we reviewing laptops or lawn mowers?
Optionally, we can include a few example reviews with their associated correct classi-
fication. This may help the model classify reviews more accurately.

The following prompt includes all the relevant pieces of information for an exam-
ple review.

We are considering product reviews for laptops. (’ Context
For each review, output "satisfied" or "dissatisfied",
depending on whether the customer is satisfied

with the product or not. @ Task description and output format
Examples:

This is a great laptop! I recommend everyone to buy it!

satisfied © First example

This laptop did not work. I had to return it.

dissatisfied O Second example

The screen is too small and it takes too long to start. €’ Review

This prompt starts with a description of relevant context (@). Customers are reviewing
laptops, so, for example, if they label items as “heavy,” that’s probably a bad sign
(unlike analyzing reviews for, let’s say, steamrollers). The task description (@) tells

1.3.3

14

CHAPTER 1 Analyzing data with large language models

the model what to do with the reviews and specifies the desired output format (output
“satisfied” or “dissatisfied”) as well. Next, we have a list of examples. Strictly speaking,
adding examples in the prompt may not be necessary for this simple task. However,
adding examples in the prompt can sometimes increase the accuracy of the output.
Here, we add two example reviews (@ and @), together with the desired output
for those reviews. Finally, we add the review (@) that we want the model to classify.
Given the preceding prompt, state-of-the-art language models are likely to output
“dissatisfied” when sent this prompt as input. That, of course, is indeed the desired
output.

Interfaces

So how can we send prompts to a language model? Providers such as OpenAl typically
offer web interfaces, enabling users to send single prompts to their language models.
In chapter 2, we will use OpenAl’s web interface to send prompts instructing the
model to analyze text or to write code for data processing.

The web interface works well as long as we send only a few prompts. However,
analyzing a large collection of text documents would require sending many prompts
(one per text document). Clearly, we don’t want to enter thousands of prompts
by hand. This is where OpenAlI’s Python library comes in handy. Using this library
enables us to send prompts to OpenAl’s models directly from Python and to process
the model’s answer in Python. This enables us to automate data loading, prompt
generation, and any kind of post-processing we need to do on the model’s answers.
It also allows us to integrate language models with other useful tools: for example, to
use the language model to write code for data processing and immediately execute
that code using other tools.

We will review OpenAI’s Python library in chapter 3. We will use this library
throughout most of this book. Other providers of language models, including
Google, Anthropic, and Cohere, offer similar Python libraries to send prompts
to their language models. We will discuss those libraries in more detail in chapter 8.

Using language models for data analysis

So how do we use language models specifically for data analysis? This book considers
two possibilities. First, we can use the language model directly on the data. This means
the language model receives the data we want to analyze as part of the prompt (along
with instructions on which analysis to perform). Second, we can use the language
model indirectly to analyze data. Here, the language model does not directly “see”
the data: that is, we do not include the data in its entirety in the prompt. Instead, we
use the language model to write code for data processing, executed in specialized
data-processing tools. Which approach to use depends on the data properties and

the task. Let’s have a closer look at both methods.

14.1

1.4 Using language models for data analysis 9

Using language models directly on data

The most natural approach to analyzing data with language models is to put the data
directly into the prompt. This is what we did in section 1.3.2: to analyze a review, we
include the review text in the prompt, along with instructions on what to do with the
text. We can use the same approach for other types of data besides text. For example,
when using multimodal models such as GPT-40, we can simply include the pictures
to analyze, together with analysis instructions, in the prompt.

Typically, we do not want to analyze a single picture or review but a whole collection
of them. For instance, assume that we want to classify an entire collection of reviews,
determining for each of them whether the review is positive or negative. In such cases,
we generally take the following approach, implemented in Python using OpenAlI’s
Python library (or an equivalent library allowing users to send prompts to other
providers’ models). We load the reviews to classify and generate one prompt for each
review. Then, we send those prompts to the language model, extract the classification
result from the answer generated by the model for each review, and save the results
in a file on disk.

In this scenario, we want to solve the same task (review classification) for multiple
text documents (i.e., reviews). As you can imagine, the prompts for different reviews
should therefore bear some similarity. Although the text of the review to classify
changes each time, the task description and other parts of the prompt remain the
same.

To generate prompts in Python, we use a prompt template. A prompt template
specifies a prompt associated with a specific task to solve. In our example, we would
use a prompt template to classify reviews as positive or negative. A prompt template
contains placeholders to represent parts of the prompt that change depending on
the input data. Considering our prompt template for review classification, we should
probably include a placeholder for the review text. Then, when generating prompts
in Python, we replace that placeholder with the text of the current review to classify.

For instance, we can use the following prompt template to classify reviews.

We are considering product reviews for laptops. " Context
For each review, output "satisfied" or "dissatisfied",
depending on whether the customer is satisfied

with the product or not. @ Task description and output format
Examples:

This is a great laptop! I recommend everyone to buy it!

satisfied © First example

This laptop did not work. I had to return it.

dissatisfied O Second example

[ReviewText] © Placeholder for review text

10

1.4.2

CHAPTER 1 Analyzing data with large language models

This prompt template generalizes the prompt we saw for classifying one specific
review (have a look at listing 1.1 in section 1.3.2). Again, we provide context (the
fact that we’re classifying laptop reviews) (@) and instructions describing the task to
solve, as well as the output format (@). We also provide a few example reviews with
associated classification results (€ and @). Although the review to classify changes,
depending on the input, we do not need to change the example reviews. Those reviews
merely illustrate what task the language model needs to solve. Finally (@), we have a
placeholder for the review text. When iterating over different reviews, we generate a
prompt for each of them by substituting the review text for this placeholder.

The example prompt template has only a single placeholder. In general, several
parts of the prompt may change depending on the input data. If so, we introduce
placeholders for each of those parts and substitute all of them to generate prompts.

Figure 1.2 summarizes how we use prompt templates when analyzing data directly
with language models. For each data item (e.g., a review to classify), we substitute for
placeholders in the prompt template to generate a prompt (we can also say that we
instantiate a prompt). We then send this prompt to the language model to solve the
data-analysis task we’re interested in.

Prompt template

Data —»[Substitute placeholders]
Prompt
\i
[Language model]
Output

Figure 1.2 Using language models directly for data analysis. A prompt template describes the analysis
task. It contains placeholders that are replaced with data to analyze. After substituting for the placehol-
ders, the resulting prompt is submitted to the language model to produce output.

Data analysis via external tools

Putting data directly into the prompt is not always the most efficient approach. For
some types of data, specialized tools are available that process certain operations on
that data very efficiently. In those cases, it is often more efficient to use the language
model to write code for data processing (rather than analyzing the data directly).
The code generated by the language model can then be executed by the specialized
tool.

1.4 Using language models for data analysis 11

We will apply this approach to structured data. For structured data such as data
tables and graphs, specialized data-processing tools are available that support a wide
range of analysis operations. Those operations, such as filtering and aggregating
data, can be performed very efficiently on structured data. Even if it was possible to
perform the same operations reliably with language models (which is not the case),
we would not want to do it because the fees we pay to providers like OpenAl are
proportional to the size of the input data. Processing large structured data sets (such
as tables with millions of rows) using language models is prohibitively expensive. In
the following chapters, we discuss the following types of tools for structured data
processing:

Relational database management system—Stores and processes relational data: that
is, collections of data tables. Most relational database management systems
support SQL, the Structured Query Language. We will use language models to
translate questions about data to queries in SQL.

Graph data management system—Handles graph data representing entities and
the relationships between them. Different graph data management systems
support different query languages. In chapter 5, we see how to use language
models to translate questions about data into queries in the Cypherlanguage,
supported by the Neo4j graph data management system.

For instance, let’s assume we want to enable lay users to analyze a relational database:
that is, a collection of data tables. Perhaps a table contains the results of a survey,
and we want to let users aggregate answers from different groups of respondents.
The survey results are stored in a relational database management system (the most
suitable type of tool for this data type). Using language models, we can enable users
to ask questions about the data in natural language (that is, in plain English). The
language model takes care of translating those questions into formal queries. More
precisely, given that the data is stored in a relational database management system,
we want to translate those questions into SQL queries.

Again, we introduce a prompt template for the task we’re interested in. Here, we're
interested in text-to-SQL translation, meaning we want to use the language model to
translate questions in natural language to SQL queries. Although the task (text-to-
SQL translation) and the data (the database containing survey results) remain fixed,
the user’s questions will change over time. Therefore, we introduce a placeholder
for the user question in our prompt template. In principle, the following prompt
template should enable us to translate questions on our survey data into SQL queries.

Database: @ Description of database
The database contains the results of a survey, stored

in a table called "SurveyResults" with the following

columns:

Question: @ Question to translate

12

1.5

CHAPTER 1 Analyzing data with large language models

[Question]
Translate the question to SQL! € Task description

First the prompt describes the structure of our data (@) . This is required to enable the
system to write correct queries (e.g., queries that refer to the correct names of tables
and columns in those tables). The description in the example template is abbreviated.
We will see how to accurately describe the structure of a relational database in later
chapters. Next, the prompt template contains the question to translate (@). This
is a placeholder to enable users to ask different questions using the same prompt
template. Finally, the prompt template contains a (concise) task description (€): we
want to translate questions to SQL queries!

Figure 1.3 summarizes the process for text-to-SQL translation. Given a correspond-
ing prompt template, we substitute the user question for the placeholder, translate
the question to an SQL query via the language model, and finally execute the query
in a relational database management system. The query result is shown to the user.

Prompt template

Question —»(Substitute placeholders]
Prompt

\j

[Language model]

SQL code

Y

Data ——»{ RDBMS]

Output

Figure 1.3 Using language models indirectly to build a natural language interface for tabular data. The
prompt template contains placeholders for questions about data. After substituting for placeholders, the
resulting prompt is used as input for the language model. The model translates the question into an SQL
query that is executed via a relational database management system.

Minimizing costs

When processing data with language models, we typically pay fees to a model provider.
The larger the amount of data we process, the higher the fees. Before analyzing large
amounts of data, we want to make sure we’re not overpaying. For instance, using
larger language models (the neural network implementing the language model has

1.5.1

1.5 Minimizing costs 13

more “neurons,” so to speak) is often more expensive, but for complex tasks, it may
pay off with higher-quality results. But if the large model is not needed to solve our
current task well, we should save the money and use a smaller model. Fortunately,
there are quite a few ways in which we can optimize the tradeoff between processing
costs and result quality. We discuss the different options next. All of them are covered
in more detail in later book chapters.

Picking the best model

OpenAl offers many different versions of the GPT model, ranging from relatively
small models to giant models like GPT-4. At the time of writing, using GPT-4 is over
100 times more expensive, per input token, than using the cheapest version.

What are tokens?

The processing fees for language models like GPT-4 are proportional to the number
of tokens read and generated by the model. A token is the atomic unit at which
the language model represents text internally. Typically, one token corresponds to
approximately four characters.

Given those price differences, it is clearly a good idea to think hard about which
specific model satisfies our needs. For instance, for a simple task like review classi-
fication, we probably don’t need to use OpenAl’s most expensive model. But if we
want to use the model to write complex code for data processing, using the most
expensive version may be worth it.

Of course, we don’t need to restrict ourselves to models offered by OpenAl.
Language models are offered by many providers, including Google, Anthropic, and
Cohere. In principle, we might even choose to host our own model, using models
that are publicly available: for example, on the Hugging Face platform. Some of
those models are generic (similar to OpenAl’s GPT models), whereas others are
trained for more specific tasks. If we happen to be interested in tasks for which
specialized models exist, we may want to use one of them. We discuss models from
other providers in more detail in chapter 8.

Picking the right model for your needs is not an easy task. As a first step, you
might want to look at benchmarks such as Stanford’s Holistic Evaluation of Language
Models (HELM, https://crfm.stanford.edu/helm/; see figure 1.4). This benchmark
compares the quality of results produced by different language models on different
types of tasks. Ultimately, you may have to try a few models on your task and a data
sample to ensure that you choose the optimal one. In chapter 9, we will see how to
benchmark different models systematically for an example task.

https://crfm.stanford.edu/helm/

14

1.5.2

CHAPTER 1 Analyzing data with large language models

A holistic framework for evaluating foundation models.

Model Mean win rate

‘Scsnarins Mcglfls L GPT-40 (2024-05-13) 13 0.845
@ @ GPT-4o (2024-08-08) 0.937

Claude 3.5 Sonnet (20240620} 0.896

GPT-4 (0613) 0.881

GPT-4 Turbo (2024-04-09) a.87g

Llama 3.1 Instruct Turbo (405B) (.868

Gemini 1.5 Pro (002) 0.853

Figure 1.4 Holistic Evaluation of Language Models (HELM): comparing language models offered by
different providers according to various metrics

Optimally configuring models

The OpenAl Python library offers a variety of tuning parameters to influence model
behavior. For instance, we can influence the probability that certain words appear in
the output of a model. This can be useful, for instance, when classifying reviews. If the
output of the model should be one of only a few possible choices (such as “positive”
and “negative”), it makes sense to restrict possible outputs to those choices. That
way, we avoid cases in which the model generates output that does not correspond to
any of the class names. To take another example, we can fine-tune the criteria used
to decide when the model stops generating output. For instance, if we know that the
output should consist of a single token (e.g., the name of a class when classifying
reviews), we can explicitly limit the output length to a single token. This prevents the
model from generating more output than necessary (saving us money in the process,
as costs depend on the amount of output generated).

We will discuss those and many other tuning parameters in more detail in chapter 3.
In chapter 9, we will see how to use those tuning parameters to get better performance
from our language models.

Another option to configure models is to fine-tune them. This means, essentially,
that we’re creating our own variant of an existing model. By training the model
with a small amount of task-specific training data, we get a model that potentially
performs better at our task than the vanilla version. For instance, if we want to classify
reviews, we might train the model with a few hundred example reviews and associated
classification results. This may enable us to use a much smaller and cheaper model,
fine-tuned for our specific task, that performs as well on this task as a much larger
model that has not been fine-tuned.

1.5.3

1.6

1.6 Advanced software frameworks and agents 15

Of course, fine-tuning also costs money, and it may not be immediately clear
whether it is worth it for a specific task. We discuss fine-tuning and the associated
tradeoffs in more detail in chapter 9.

Prompt engineering

The prompt template can significantly affect the quality of the results produced by
the language model. A good prompt template clearly specifies the task to solve and
provides all relevant context. We will see how to map various tasks to suitable prompt
templates throughout the following chapters, covering a variety of data types. After
working through those examples, you should be able to design your own prompt
templates for novel tasks, following the same principles.

Similar to the model choice, it can be hard to pick the best prompt template for a
given task without doing any testing. In chapter 9, we will test prompt templates in
an example scenario and illustrate how different prompt templates lead to different
outcomes. In some cases, investing a little time in finding the best prompt template
may enable you to get satisfactory performance with fairly cheap models (whereas
working with the unoptimized prompt template may make a more expensive model
necessary).

Where to get prompt templates

Finding a good prompt template for a new task may take some time. If you do not
want to spend that time, have somebody else do it for you! More precisely, you
can find platforms on the web that enable users to buy and sell prompt templates.
One of them is PromptBase (https://promptbase.com). Say you want to translate
English questions into SQL queries. By entering corresponding keywords, you will
find not one but multiple alternative prompt templates on that platform. If the
prompt template seems like a good match based on the associated description,
you can buy it and use it for your data-analysis needs.

Advanced software frameworks and agents

Throughout most of this book, we will use OpenAI’s Python library and similar libra-
ries from other providers. For instance, these libraries enable you to send prompts
to language models and receive the models’ answers. Although they are entirely
sufficient for many use cases, you may want to consider more advanced software frame-
works when developing complex applications that are based on language models.

In this book, we discuss two advanced software frameworks for working with lan-
guage models: LangChain (https://langchain.com) and Llamalndex (www.llamain
dex.ai). Both make it easier to develop Python applications for data analysis with
language models.

Besides many other features, these frameworks make it easy to create agents
that use language models. This approach is useful for complex data-analysis tasks

https://promptbase.com
https://langchain.com
www.llamaindex.ai
www.llamaindex.ai

16

CHAPTER 1 Analyzing data with large language models

requiring, for instance, combining data from multiple sources. For most of this book,
we solve data-analysis tasks with a single invocation of the language model, whether
itis analyzing a text document or translating a question about data to a formal query.
If the task requires multiple steps, such as performing preprocessing before calling
the language model or post-processing on the model’s answer, we must hard-code
the corresponding processing logic.

This approach works as long as we can reliably predict the sequence of steps
required for data processing. However, in some cases, it can be difficult to predict
which steps are required. For instance, we may get questions from users that refer
either to a text document or to a relational database. So, depending on the question,
we need to either write an SQL query or extract information from text documents. Or
perhaps we might need information from both the text and the relational database,
extracting information related to the question from the text and then using the
information we obtain to formulate an SQL query.

In such cases, it is not possible to hard-code all possible sequences of steps in
advance. Instead, we want to design an approach that is flexible enough to decide
independently what step is required next. This can be done using agents and langu-
age models. With this approach, the language model is used to decompose complex
analysis tasks into subproblems. Furthermore, the language model may choose to
invoke tools: arbitrary functions whose interfaces are described in natural language.
Such tools can, for instance, encapsulate the invocation of an SQL query on a relatio-
nal database. After invoking a corresponding tool, the language model is given access
to the invocation result (e.g., the query result) and can use that result to plan the
next steps. We will see how to use agents to solve complex data-analysis tasks where it
is unclear, a priori, which data sources and processing methods are required to solve
them.

Summary

Language models can solve novel tasks without specialized training.

The prompt is the input to the language model.

Prompts may combine text with other types of data, such as images.

A prompt contains a task description, context, and (optionally) examples.
Language models can analyze certain types of data directly.

When analyzing data directly, the data must appear in the prompt.

Prompt templates contain placeholders: for example, to represent data items.
By substituting for placeholders in a prompt template, we obtain a prompt.
Language models can also help to analyze data via external tools.

Language models can instruct other tools on how to process data.

Models are available in many different sizes with significant cost differences.
Models can be configured using various configuration parameters.
LangChain and Llamalndex help to develop complex applications.

Agents use language models to solve complex problems.

Chatting with ChatGPT

This chapter covers

Accessing the ChatGPT web interface
Using ChatGPT directly for data processing
Using ChatGPT indirectly for data processing

Time to meet ChatGPT! In this chapter, we will have a chat with ChatGPT and start
using it for data analysis. If you have never used ChatGPT, this chapter will teach
you how to access it and give you a first impression of its capabilities (as well as its
limitations). If you have used ChatGPT but have not yet done so for data analysis,
this chapter will show you some of the many ways you can exploit ChatGPT in this
context.

We will first discuss a web interface that will give you access to OpenAI’s ChatGPT.
We will go over the OpenAl registration process, discuss the main functions offered
by the interface, and use it to have a first dialogue with ChatGPT. After that, we
will start using ChatGPT to analyze data in a few example scenarios. We will see two
different ways to exploit ChatGPT for data analysis: directly and indirectly. When
using ChatGPT directly, we have it do the actual data processing given data and a
task description as input. This works for data types that ChatGPT processes natively
(such as text data).

17

18 cuapter 2 Chatting with ChatGPT

On the other hand, we can also use ChatGPT to analyze data indirectly. Here,
ChatGPT merely serves as a translator, translating descriptions of analysis tasks into
formal languages that are understood by external data-processing tools. The actual
data processing is then handled by those external tools. In this chapter, you will see
that ChatGPT is useful in both scenarios.

2.1 Accessing the web interface

Open your web browser, and type https://chat.openai.com/ into the address bar. You
will create an OpenAl account that enables you to use ChatGPT. If you already have
an account, you can skip the following steps, log in to your account, and proceed
with the next section.

To create an account, click the Signup button. This brings you to the screen shown
in figure 2.1.

®

Create your account

Please note that phone verification is reguired for
signup. Your number will anly be used to verify
vour identity for security purpozes.

— Email address

Already have an account? Login

Email field — N,

OR
Google login ™ >~ & Continue with Google

. . mm i i i
Microsoft login “N_,y & Continue with Microsoft Account

Terms of use Privacy palicy
/

Figure 2.1 Signup page for an OpenAl account. Enter your email address, and click the Continue
button, or sign up using a Google account or a Microsoft account.

https://chat.openai.com/

2.2 Making introductions 19

You have several options when signing up for an OpenAl account:

Sign up using a Google account (by clicking Continue with Google).

Sign up using a Microsoft account (by clicking Continue with Microsoft
Account).

Sign up with an arbitrary email address by entering that address into the Email
Address field and then clicking Continue. After that, follow the instructions
given on the screen.

After creating your account using any of these options, log in to your newly created
account, and continue with the steps outlined in the next section.

OpenAl subscriptions

OpenAl offers different types of accounts; some are free, and others come with a
monthly fee. For the following examples, a free account is sufficient. You may still
choose to sign up for the paid subscription to gain access to more models and get
faster answers from ChatGPT. Depending on which subscription you choose, your
screens may look slightly different from the screenshots in this chapter.

2.2 Making introductions

After logging in to your OpenAl account, you should see the interface shown in

figure 2.2.
History New chat
/ / Model Examples
« ¥ rd
[0 & ChatoPTdo 0
]
[
Input field

Figure 2.2 ChatGPT web interface. Interact with ChatGPT by clicking predefined example inputs
or entering arbitrary text into the input field. Click the New Chat button to reset the conversation.

20

CHAPTER 2 Chatting with ChatGPT

This interface enables you to have a dialogue with ChatGPT by submitting text
input and receiving answers. Let’s take a moment to understand the most important
interface components in figure 2.2. First, you have a couple of predefined input
examples. You can simply click any of those examples to get the conversation started.
Besides predefined examples, you have the option to enter arbitrary text into a text
field. We will refer to this interface element as the input field in the rest of this chapter.
Finally, you can start a new conversation at any point via the New Chat button. Doing
so erases ChatGPT’s memory of all prior dialogue steps.

Which model should | choose?

Clicking the button labeled Model in figure 2.2 enables you to choose between
different language models. ChatGPT supports several models from OpenAl’'s GPT
model series. The examples discussed next should, in principle, work with any of
the available models. You might try a few different models to see how the output
differs. Depending on your subscription, the number of requests you can send to
specific models may be limited.

Time to say hello! Click the input field, and say hello to ChatGPT. You can type
anything. ChatGPT has been trained to conduct dialogues with human users and
should be able to answer most inputs in a reasonable manner. For instance, tell
ChatGPT a little about yourself! Ask for opinions or help with upcoming tasks! Or,
perhaps, ask it to write a poem about a topic of your choice! You may want to spend
a few minutes chatting with ChatGPT to get a better sense of its capabilities as well as
its limitations.

Note that ChatGPT can refer back to prior inputs. For instance, if you are not
satisfied with a prior reply, you may ask ChatGPT to correct it or to change it. No
need to repeat the original request. Also, if you are not satisfied with an answer but
do not want to provide further clarifications, try the button labeled Regenerate in
figure 2.3.

Regenerate Clicking that button will cause ChatGPT to regenerate
its last answer. As ChatGPT uses a certain degree of
randomization while generating output, chances are

¥
M I QP ’ good that the second output will be different (and
possibly better) than the first version.
Figure 2.3 After ChatGPT gene- Typically, all text you enter is part of the same co-

rates an answer, the Regenerate
button appears below the genera- . ! .
ted response. Click this button to (essentially erasing ChatGPT’s “memory” of the prior

receive an alternative answerto conversation), simply click the button labeled New
your last input. Chat in figure 2.2. Note that prior conversations are
not lost, even when you start a new one. Instead, OpenAl stores past conversations

nversation. If at any time you want to start a new chat

and enables users to go back and study them (or continue the conversation from

2.3

2.3 Processing text with ChatGPT 21

where it ended last time). You can access a history of prior conversations by clicking
the button labeled History in figure 2.2. Each conversation is assigned a short title,
generated automatically based on the conversation content.

Using ChatGPT for the first time is often an impressive experience. ChatGPT
generates polished and reasonable answers for a variety of topics. This may mislead
users into putting too much faith in the information it provides. It’s important to
avoid losing sight of the various limitations that apply to the current generation of
language models. In general, always verify the output of the language model before
relying on it.

What are hallucinations?

The term hallucination in language models refers to situations in which a langu-
age model invents new content in the absence of information and integrates it
into answers. Often the result sounds convincing, and it can be hard to recognize
instances of hallucination. Ongoing research [1] explores methods to reduce the
chances of hallucinations. However, at the time of writing, no reliable strategies to
avoid hallucinations are known. So don’t blindly trust information from language
models, and always use alternative sources for corroboration.

Processing text with ChatGPT

Let’s start using ChatGPT for data processing! In this section, we will use ChatGPT to
analyze text, a common type of unstructured data. At the same time, text is ChatGPT’s
native input and output format. This means we can use ChatGPT directly to analyze
our (text) data without involving external analysis tools. That helps keep things
simple, and that’s what we want for our first steps toward ChatGPT-supported data
analysis.

Imagine the following situation: you’re an employee of Banana, a producer of
various consumer electronics, including laptops and smartphones. The Banana
website enables users to post free-form text comments. It turns out that many users
comment on their satisfaction or dissatisfaction with specific Banana products. Users
often point out specific aspects of these products that stand out or need improvement.
In aggregate, all those reviews should be very helpful to inform the design of future
Banana products! But to make that possible, you first need to analyze all of them
and extract common points. Your boss asks you to do just that: prepare statistics that
summarize reviews for different products and product categories. Also, while you’re
reading through reviews, your boss encourages you to write a few nice replies to the
product reviews. Ideally, you want to avoid spending the next weeks reading and
aggregating reviews. Can’t you automate that? Perhaps ChatGPT can help.

Next, we’ll use the ChatGPT web interface to analyze an example review. If that
works well, it may be possible to scale up the process to automatically analyze all of
them! If you have started a dialogue previously, first click the button labeled New

22

CHAPTER 2 Chatting with ChatGPT

Chat in figure 2.2 to start a new conversation. This will make sure that the topics you
discussed with ChatGPT previously won’t interfere with the analysis examples we try
next.

Let’s start by telling ChatGPT about the review that we want to analyze. Click the
input field, enter the text after the User marker in the following dialogue, and then
press Enter.

User: Have a look at the following product review:

“I bought the BananaBook a year ago and I'm super happy with this
product! The screen is awesome and allows me to easily read content, even
in bright sunshine. It’s fast enough for everything I want to do with it, e.g.,
coding, office work. The only drawback is its weight, I wish it were a little
lighter as I have to carry it around quite a bit. But, for that price, it’s a
great offer.”

GPT: Based on the review, the BananaBook is a product that the reviewer pur-
chased a year ago and is still satisfied with. The screen of the BananaBook
is impressive, allowing the user to read content easily, even in bright sun-
shine. The device is also fast enough for the user’s needs, including coding
and office work. However, the reviewer did mention that the BananaBook
is a bit heavy, which can be an inconvenience when carrying it around.
Overall, the reviewer seems to think that the BananaBook is a great value
for its price.

The text after the GPT marker is the answer generated by ChatGPT during a sample
session. In this case, ChatGPT simply repeats the review, albeit with slightly different
wording, demonstrating that it has accepted and “understood” your input.

Why am | getting different output?

ChatGPT uses a certain degree of randomization when generating output. This
means you generally won’'t see the same output, even when you submit exactly
the same input twice. For that reason, the chances of you seeing the precise
output shown here are small. However, you are likely to get output of similar
quality.

Let’s start our text analysis with a simple classification, mapping the review to a
category. Specifically, we will try to classify the review into one of three product
categories: mobile phones, personal computers, and game consoles.

WARNING Do not click the New Chat button before entering the next text!
The purpose of the New Chat button is to erase ChatGPT’s memory of prior
conversation steps. But that’s not what we want here at all. All of the following
analyses refer to the same review that we entered initially. This works only if
ChatGPT remembers that review.

2.3 Processing text with ChatGPT 23

User: Which product category does the review refer to (mobile phones, personal
computers, game consoles):

GPT: Based on the information provided in the review, it is not clear which
product category the BananaBook belongs to. The reviewer did not specify
whether it is a mobile phone, personal computer, or game console. Ho-
wever, based on the fact that the reviewer mentioned using the device for
coding and office work, it is more likely that the BananaBook is a personal
computer or a laptop rather than a mobile phone or a game console.

Not bad! ChatGPT has clearly understood the task and provides a detailed reply.
The BananaBook is a fictitious device, and it’s not immediately clear what type of
product we’re talking about. However, as ChatGPT rightfully points out, coding and
office work are most typically associated with personal computers (more so than
with mobile phones or game consoles). Despite the uncertainty, ChatGPT can come
up with a reasonable answer and justify it thoroughly. In this instance, the answer
from ChatGPT is even more fine-grained than required: although ChatGPT links
the review to one of the three provided categories, it additionally hypothesizes that
the review refers to a laptop (a subcategory of personal computers). This assumption
seems reasonable in this context, given that the user carries the computer regularly
(typically associated with laptops rather than desktop machines).

The previous answer is reasonable but maybe a bit lengthy. In fact, its length is
similar to the original review. No point in using ChatGPT for text analysis if the
resulting answer is as long as the source text. Let’s ask ChatGPT to be a little more
concise. There’s no need to provide a detailed justification; rather, we want to get
only the name of the most likely category for the review.

User: Answer concisely, only write the name of the most likely product category
(mobile phones, personal computers, game consoles):

GPT: Personal computers.

That’s much better! Clearly, ChatGPT was able to understand our instructions and
adapt its prior answer accordingly. Besides being faster to read, the concise output
has another advantage. If, ultimately, we want to analyze many reviews as opposed to
a single one, it is important to have homogeneous output across reviews. For instance,
having homogeneous output makes it easier to count the number of reviews in each
of the three categories.

Let’s classify the review according to different categories. This time, we will directly
hint at the desired output format (note that our specification “answer concisely”
refers back to the previous instructions).

User: Which product category out of food, cosmetics, electronics does the review
refer to? Answer concisely:
GPT: Electronics.

Perfect! That is the right category, and the output format is as expected. So far, we
have seen that ChatGPT is able to classify reviews according to different criteria. This

24

CHAPTER 2 Chatting with ChatGPT

seems useful, for instance, for creating statistics by counting the number of reviews in
each category. But ideally, we also want to analyze the content of those reviews. Which
products or product categories need improvement most urgently? To determine
that, we need to know whether reviews are positive or negative: that is, whether the
user is satisfied or dissatisfied with the product. This is yet another way to categorize
the review text. However, this time, our classification refers not to the product being
reviewed but to the review content.

User: Is the customer satisfied or dissatisfied with the product? Answer with

“satisfied” or “dissatisfied”:
GPT: Satisfied.

Yes, that’s correct! Using the combination of the capabilities seen so far, we could
already use ChatGPT to count the number of positive and negative reviews for
different product categories. This gives us some information about which product
categories urgently need improvements, but that may not be specific enough. For
instance, it may be interesting to find out what aspects of a product users are most
happy or unhappy with. Let’s try using ChatGPT to extract this information as well.

User: Which positive aspects of the product does the review mention? Answer
with a numbered list, each aspect is described by maximally three words:
GPT: 1.Impressive screen
2. Fast performance
3. Suitable for coding
4. Great value

Correct again! ChatGPT extracts the most salient product advantages mentioned
in the review. Note that the output format complies again with the corresponding
instructions: it’s a numbered list, and each entry has at most three words. How about
the drawbacks mentioned in the review?

User: Which negative aspects of the product does the review mention? Answer
with a numbered list, each aspect is described by maximally three words:
GPT: 1. Heavy weight

Indeed, the only drawback of the BananaBook is the weight, according to the user.
Note that ChatGPT sticks to the requested output format (a numbered list) even
though the result contains only a single entry.

Classifying reviews and extracting specific strengths and weaknesses works great if
we want to aggregate reviews into statistics. However, doing so may discard informa-
tion: for example, a more detailed justification for why users do or do not like specific
aspects of a product. Sometimes we may just want to read a review sample. But to
avoid spending time reading overly long reviews, it would be great to summarize
those reviews first. Let’s use ChatGPT to do so.

User: Summarize the review in three sentences:

2.3 Processing text with ChatGPT 25

GPT: The reviewer purchased the BananaBook electronics product a year ago
and remains satisfied with it. The BananaBook has an impressive screen
that allows for easy reading in bright sunlight and is fast enough for coding
and office work. The only drawback is its heavy weight, but for the price,
the BananaBook is a great value.

The result is a reasonable summary that uses precisely the number of sentences
requested in the instructions. Can we get it even more concisely?

User: Summarize the review in one sentence:

GPT: The reviewer is happy with the BananaBook electronics product due to its
impressive screen, fast performance, and great value, despite it being a bit
heavy.

Yes, that works as well! Indeed, after initial testing, it seems that ChatGPT may help

automate various analysis tasks. Finally, let’s see whether we can exploit it for tasks

beyond mere analysis. Maintaining good customer relationships is a priority for

Banana! Hence the question from your boss, asking you to write friendly answers to

the user comments wherever possible. But doing that takes time as well. Can’t we use

ChatGPT to automate that step too? Let’s see ...

User: Write a friendly reply to the review from the company producing Banana-
Book!
GPT: Sure, here’s a friendly reply to the review:

Dear valued customer,

We are thrilled to hear that you are still happy with your BananaBook elec-
tronics product a year after your purchase! We designed the BananaBook
to offer an impressive screen and fast performance for our users, and we
are glad to see that these features meet your needs for coding and office
work. We appreciate your feedback on the weight of the device and will
take it into consideration for future improvements. Thank you for choos-
ing BananaBook, and we hope to continue exceeding your expectations!
Best regards,

[Company Name]

Pretty good! ChatGPT answers with a friendly message to the customer, referencing
specific points in the review in the appropriate manner (confirming positive points
mentioned by the customer and promising improvements with regard to the weak-
nesses). Note that ChatGPT leaves a placeholder for the name of the corresponding
company (marked by square brackets). So far, we haven’t told ChatGPT the name of
our company (Banana) yet. Let’s fix that.

User: The name of the company is Banana - replace the corresponding place-
holder in your answer.

26

CHAPTER 2 Chatting with ChatGPT

GPT: Iapologize for the mistake in my previous response. Here’s an updated
reply with the correct company name:

Dear valued customer,

We are thrilled to hear that you are still happy with your BananaBook
electronics product a year after your purchase! We designed the Banana-
Book to offer an impressive screen and fast performance for our users,
and we are glad to see that these features meet your needs for coding and
office work. We appreciate your feedback on the weight of the device and
will take it into consideration for future improvements. Thank you for
choosing Banana, and we hope to continue exceeding your expectations!

Best regards,
The Banana Team

Okay, that works! Based on the additional information, ChatGPT was able to substitute
the name of the company for the placeholder in the previous answer.

WARNING Language models like ChatGPT may occasionally generate harmful
content, even though recent models have significantly decreased the chance
of such occurrences. It is recommended to check the text generated by Chat-
GPT before posting it on public forums. Hence, automatically writing answers
to customer reviews is not a good use case without some degree of human
oversight.

We have seen that we can use ChatGPT for various tasks in text processing. We have
used ChatGPT for categorizing text based on different criteria and using custom
categories (classification according to review target and according to review content).
We have also used it to extract specific pieces of information from a text and to
summarize documents (i.e., reviews). Finally, we have used ChatGPT to generate text
answering a customer review. In all cases, ChatGPT was able to follow instructions
about the task and the desired output format. If you want, try writing a different
review, and make sure ChatGPT can still solve all of these tasks.

Until recently, each of the different text-processing tasks we discussed in this
section would have required a specialized language model. The latest generation of
language models is flexible enough to solve a variety of tasks based on a description
of the task in plain English (as well as other natural languages).

Note that we have processed only one short review so far. Here, using ChatGPT
does not really provide a benefit. We could have classified or summarized the review
manually and done it much more quickly than with the help of ChatGPT. Of course,
the goal of automation is to scale processing up to a large number of (possibly
longer) reviews. If we’re talking about hundreds, perhaps thousands, of reviews,
manual analysis will take much longer than setting up ChatGPT to do the task. But a
crucial component is still missing: How do we inform ChatGPT about all the review

2.4

2.4 Processing tables with ChatGPT 27

text? Can we simply copy and paste the whole collection of reviews into the ChatGPT
web interface?

That approach won’t work. Language models generally come with restrictions
regarding the amount of information they can process at once. Hence, we need a
mechanism that automatically “feeds” single reviews (or small collections of reviews)
to ChatGPT for processing. We will discuss corresponding approaches in the following
chapters. For now, we just want to verify that ChatGPT can be used, in principle, to
perform a diverse range of analysis tasks on text documents.

Processing tables with ChatGPT

In the last section, we used ChatGPT directly for data processing, providing ChatGPT
with data as well as a task description as input. This approach is reasonable as long as
we’re processing text, the “native” input and output format of ChatGPT. For other
types of data, it is much more efficient to use specialized, data type-specific tools for
data processing. You may be wondering: If we process data with external tools, how
can ChatGPT still be helpful in this context?

There are many tools for processing data, specialized for different types of data,
processing, and hardware or software platforms. To use such tools, users often need
to express the desired analysis operations in tool-specific formal languages. Writing
code to analyze data can be tedious for experts and even more so for users with a
limited IT background. Here, language models like ChatGPT can help because they
understand natural language as well as the formal languages used by data-analysis
tools. This means we can use ChatGPT as a sort of “translator,” translating our
questions about the data, formulated in plain English, into code in various languages
to be executed via external tools. This is what we will do next.

You’re back at Banana and have successfully used ChatGPT to analyze all the
various reviews submitted by users. It is natural to represent this information as a data
table. Each row corresponds to one review, and the columns represent the different
types of information extracted from the review. Table 2.1 shows the first few rows.

To keep the example simple, we use a
Table 2.1 Example table with three columns

representing the review ID, a flag indicating . .
whether the reviewer is satisfied with a product, to a subset of the analyses described in the

table with a few columns corresponding

and the product category previous section. The first table column

contains the review ID. The second col-

ReviewlD | Satisfled Category umn contains a flag indicating whether

1 1 Laptops the reviewer is satisfied with the product
2 0 Phones (1) or dissatisfied with the product (0).
2 1 Gaming The final column contains the category.

For this example, we consider only three

categories: laptops, phones, and gaming.
This table is already a much more concise representation of the original reviews. But
the full table has many rows (because we started with many reviews), and reading the

28

24.1

CHAPTER 2 Chatting with ChatGPT

raw table data doesn’t provide very much insight. Ideally, we want to aggregate data
in interesting ways and present only the high-level trends to our boss. Which tools
can we use to do that?

Processing tables in the web interface

The first option is using the OpenAl web interface directly to analyze tabular data.
First, let’s download an example table with the review analysis results. Search for the
link named Review Table on the book’s companion website (www.dataanalysiswith
llms.com), and download the associated file. It contains a table with the structure
shown in table 2.1 in .csv format.

What is the .csv format?

CSV stands for comma-separated values. It designates a specific format used to
represent tabular data. Each table row is stored in a separate line, and values for
different columns in the same row are separated by commas.

To analyze such data directly in the ChatGPT web interface, we first need to upload
it. Click the Upload button shown in figure 2.4 (before doing so, you may also want
to start a new chat). Choose the Upload From Computer option, and select the file
you just downloaded (reviews_table.csv).

& Connect to Google Drive

@ Connect to Microsoft OneDrive

From computer //N] Upload from computer

—0

Upload button -

Figure 2.4 Click the Upload button, and choose the Upload From Computer option to upload files
on disk.

After uploading the file, it should appear next to the input text field. You can now
enter arbitrary questions about the data into the input text field. When generating
its answers, ChatGPT will take into account and analyze the data you provided. For
instance, let’s ask about the number of reviews for each product category.

User: How many reviews do we have for each product category?

You should see output like that shown in figure 2.5. ChatGPT shows a table containing
the answer to your question (each row counts the number of reviews for one product
category) and accompanying text.

www.dataanalysiswithllms.com
www.dataanalysiswithllms.com

2.4 Processing tables with ChatGPT 29

/@
Category Review Counts
index category

1 lapiops 3379

2 gaming 3340

3 phones 3281
| have calculated the number of reviews for each product category and displayed the results for
you. Let me know if you need any further analysis or information! [>-]
G g o P \ .

Show analysis

Figure 2.5 Answer generated by ChatGPT for a question about the input table. Click the Show Analysis
button to see how ChatGPT determined the answer.

How did ChatGPT calculate the answer? Did it read the entire table to generate
the reply directly? Not quite. In the background, ChatGPT generates and executes
Python code on OpenAl’s platform that analyzes the input data (in this scenario, the
Python execution engine is the external tool we referred to initially). You can see the
generated code by clicking the button labeled Show Analysis in figure 2.5. In fact, it
is highly recommended to check the generated code instead of relying blindly on an
answer. After all, despite their amazing capabilities, language models do regularly
make mistakes.

Try a few more questions, check the generated code, and possibly even try a few
different data sets (you can upload any tabular data on your computer, such as in
Excel format). You will find that ChatGPT can handle a variety of data sets and
requests.

This seems to work pretty welll Why do we need anything else? Well, there are a
couple of reasons why we would like to explore other external tools for data analysis.
First, there are strict limits on the size of files we can upload (512 MB at the time of
writing). Uploading large data sets is not possible. Second, you may have noticed
that data analysis with Python can take a few seconds, even for moderately sized data
sets (e.g., the table with reviews has only 10,000 rows, which is small according to
today’s standards). Analyzing large data sets takes prohibitive amounts of time. Finally,
uploading data to OpenAl may not be acceptable for each use case. To preserve
privacy for sensitive data, users may prefer analyzing data on their own platforms.
In the next section, we will see how we can use ChatGPT to analyze data outside of
OpenAl’s web interface.

30

2.4.2

CHAPTER 2 Chatting with ChatGPT

Processing tables on your platform

In some scenarios, analyzing data directly in OpenAl’s web interface is not an option.
Instead, ChatGPT can help us use various other tools for data analysis that are directly
under our control. Next, we will use a relational database management system (RDBMS).
Such systems are specialized for handling data of the type we’re interested in and
tend to achieve high processing efficiency. This is just an example: the proposed
approach generalizes to various other types of data-analysis systems.

Relational database management systems

A relational database management system is specialized for handling relational
data: that is, data sets that contain one or multiple tables of the type in table 2.1.
Most of them support variants of Structured Query Language (SQL), a language
used to describe data and operations on data. For the following examples, we
assume that you are familiar with the basics of SQL and RDBMSs. If you aren't,
you can find a short introduction to SQL in chapter 5. To get more details, consider
reading the book Database Management Systems by Gehrke and Ramakrishnan [2],
or try the online course by this book’s author at www.databaselecture.com.

We will use SQLite, one of the most popular RDBMSs. To save you the headaches
of installing and configuring that system on your machine, go to the book’s com-
panion website, and follow the link to the BananaDB resource. It will lead you to a
Google Colab notebook that you can use for the following steps. Figure 2.6 shows
the notebook you should see after following the link.

(0 & BeoalBim
TRk T Ve b e Tate b S e v

N, .

Ercinzthe uope coll cno 10 o o tabi uanzg e I 2 Then, cnles cusres
1 zoe ey e

vo B DE

O ot e
it aqLiter

Create database

‘/_/SQL query

Execute query

e

Sl ol EERY " x

Figure 2.6 Google Colab notebook allowing you to query the BananaDB database via SQLite. Execute
the upper cell (Create Database) to create the database, replace the given SQL query (SQL Query) with a
query of your choice, and then execute the lower cell (Execute Query) to see the query result. The arrow
marks the Run button to execute the upper cell.

www.databaselecture.com

2.4 Processing tables with ChatGPT 31

Google Colab notebooks

We will use Google Colab notebooks to enable you to try the following examples
without installing software on your local machine. The following explanations
assume that you’re familiar with Colab Notebooks in general. If you want to brush up
on your notebook skills, check out the tutorial at https://colab.research.google.com.

The notebook already contains code for creating an example database and analyzing
data in it. This chapter is about getting the hang of ChatGPT’s web interface. Hence,
for the moment, we will not spend time discussing the code in the notebook in detail.
For the rest of this chapter, it is sufficient to know what the code is doing and which
specific parts of it you need to change in the following paragraphs. At a high level
of abstraction, the code in this notebook creates a database with example data and
allows you to execute SQL queries that analyze that data via SQLite.

You see two cells containing code in the notebook (labeled Create Database and
Execute Query in figure 2.6). The upper cell (Create Database) contains code that
creates a database containing an extended version of table 2.1, filling it with data for
about 1,000 reviews. Let’s execute that cell first by clicking the Run button in the
upper-left corner of the cell (marked with an arrow in figure 2.6). After a couple of
seconds, this should create an SQLite database and fill it with corresponding data.
You only need to execute this cell once per session. If you do not interact with the
notebook for a sufficiently long time, the environment will be reset, and you will
need to execute the cell again.

We will ask ChatGPT to write SQL queries for us that refer to this database. You can
execute SQL queries on the data using the lower cell in figure 2.6 (Execute Query). By
default, the cell contains an SQL query counting the number of reviews in the Gaming
category. Execute the cell (by clicking its Run button) to see whether everything is
working. After executing the cell, you should see the number of reviews in the Gaming
category: 342. We will replace the current query (select count (*) from reviews
where category = ’‘gaming’;) with the queries proposed by ChatGPT and then
re-execute this cell to get the results for the new queries.

Okay, it’s time to have ChatGPT do some data analysis for us! First, start a new
dialogue by clicking the New Chat button in the ChatGPT web interface. This is
important to make sure prior dialogue steps do not interfere with our new task.
To use ChatGPT for writing queries, we first need to tell it a little about what our
database looks like. In particular, we should describe the table structure, meaning
the name of the table (Reviews) and all associated columns. In this case, the table
has three columns, and we should probably add some text describing the content
in those columns. When writing SQL queries, it is useful to know about the types of
data in each column and ideally some information about the specific values we may
find and their semantics.

https://colab.research.google.com

32

CHAPTER 2 Chatting with ChatGPT

Finally, another important piece of information is the specific system we use to
analyze data. Although many RDBMSs support SQL, and SQL is fairly standardized,
the specific subset of supported SQL features may differ across systems. Furthermore,
some of these systems may support SQL syntax that slightly deviates from the SQL
standard.

Having clarified what matters for writing SQL queries, let’s provide ChatGPT with
that information for our BananaDB example database.

User: We have an SQLite 3 database with a table (named Reviews) summarizing
product reviews. The table has three columns:
- ReviewlD (the integer ID of the review)
- Satisfied (1 if the reviewer is satisfied and 0 if the reviewer is not satisfied)
- Category (“laptops,” “
GPT: That’s great! Having an SQLite database with a table named “Reviews”that
summarizes product reviews can be quite useful. With the three columns

phones,” or “gaming”)

you mentioned (ReviewlD, Satisfied, and Category), you can store and
retrieve valuable information about the reviews.

To help you further, I can provide you with some example SQLite queries
that you can use to interact with your database. Please let me know what
specific operations or information you would like to perform or retrieve
from the database.

ChatGPT is upbeat about the prospect of analyzing our database and answers with
a summary of the database structure that we provide in our input. Also, ChatGPT
already has a sense of where this is going and proactively proposes writing some
example SQL queries before we even ask it to. Let’s see what ChatGPT has in store.

User: Sure! Please provide some example queries!

GPT: Certainly! Here are some example queries that you can use to interact
with your SQLite database table named “Reviews”:

Retrieve all reviews:
SELECT * FROM Reviews;

Retrieve satisfied reviews:
SELECT * FROM Reviews WHERE Satisfied = 1;

Retrieve unsatisfied reviews:
SELECT * FROM Reviews WHERE Satisfied = 0;

Retrieve reviews for laptops:
SELECT * FROM Reviews WHERE Category = ’laptops’;

Retrieve reviews for phones:
SELECT * FROM Reviews WHERE Category = ’phones’;

Retrieve reviews for gaming:
SELECT * FROM Reviews WHERE Category = ’gaming’;

2.4 Processing tables with ChatGPT 33

Count the total number of reviews:
SELECT COUNT (*) FROM Reviews;

Count the number of satisfied reviews:
SELECT COUNT (*) FROM Reviews WHERE Satisfied = 1;

Count the number of unsatisfied reviews:
SELECT COUNT (*) FROM Reviews WHERE Satisfied = 0;

These queries should give you a starting point to perform various opera-
tions on your “Reviews”table. You can modify them or combine them to
suit your specific requirements.

Not bad! The queries cover quite a few natural questions; for example, about the
number of reviews that fall into specific categories. In general, asking ChatGPT to
propose queries is not a bad way to start analyzing a data set.

You may notice, by the way, that the web interface displays SQL queries using a
specific representation. Figure 2.7 shows how the first query is displayed.

Copy code

N

sql ¥ Copy code

SELECT =
FROM Reviews;

Figure 2.7 The ChatGPT web interface uses specialized markup to represent code, including SQL
queries. Click the Copy Code button to copy the code (making it convenient to paste it into suitable
interfaces for execution).

The SQL query is in a box, making it easy to copy it by clicking the Copy Code button.
To try any of the proposed queries, copy it (as described before), and then insert
it at the appropriate position in the BananaDB notebook (labeled SQL Query in
figure 2.6). Finally, execute the surrounding cell in the notebook to obtain the query
result.

Let’s see whether we can make GPT translate our own questions into queries as
well.

User: Write an SQL query to retrieve the product category with most reviews!
GPT: To retrieve the product category with the most reviews from your SQLite
database table “Reviews,”you can use the following SQL query:

SELECT Category, COUNT (¥*) AS ReviewCount
FROM Reviews

GROUP BY Category

ORDER BY ReviewCount DESC

LIMIT 1;

34

CHAPTER 2 Chatting with ChatGPT

This query uses the GROUP BY clause to group the reviews by the
“Category”column. Then, it applies the COUNT (¥) function to count
the number of reviews in each category. The results are ordered in descen-
ding order based on the review count using the ORDER BY clause. Finally,
the LIMIT 1 clause ensures that only the category with the highest review
count is returned.

The query will return the product category along with the corresponding
count of reviews for that category.

We are interested in finding the product category associated with most reviews.
ChatGPT translates our question into an SQL query that retrieves the corresponding
result. If you execute this query on our example database, it should retrieve the
Gaming category, along with the number of associated reviews.

How to deal with multiline queries

This is the first multiline SQL query generated by ChatGPT. To use that query in
our Colab notebook, surround the query with triple quotes (7~ ”) rather than single
quotes. Doing so ensures that the entire query is treated as a single string.

Strictly speaking, we asked for the category but not the associated count. Here,
ChatGPT takes some liberty by adding the count to our query result. In this case,
that may be acceptable and even interesting. In general, if you’re using ChatGPT
to translate questions into queries, make sure it does not expand your queries in
ways that are not acceptable (e.g., if the output is forwarded to another tool that

expects a specific input format). Let’s see whether we can make ChatGPT follow our
instructions more closely.

User: The query result should only return the category.

GPT: Apologies for the oversight. If you want the query to return only the
category with the most reviews, you can modify the previous query by
selecting only the “Category”column:

SELECT Category

FROM Reviews

GROUP BY Category

ORDER BY COUNT (*) DESC
LIMIT 1;

This updated query will retrieve the product category with the highest
number of reviews from the “Reviews”table. It groups the reviews by cate-
gory, orders them based on the count of reviews in descending order, and
then selects only the top result using the LIMIT 1 clause. The query will
return the category with the most reviews.

2.4 Processing tables with ChatGPT 35

Perfect! ChatGPT has slightly rewritten the previous query to return only the category
but not the associated count. You may notice that ChatGPT’s answers contain the
query and an explanation for why the query does what it is doing. Such explanations
are helpful to verify that queries generated by ChatGPT are indeed correct. Next,
let’s drill down a bit further and see which ratio of reviewers were satisfied with their
gaming products.

User: What is the ratio of positive reviews in the gaming category?
GPT: To calculate the ratio of positive reviews in the gaming category from your
SQLite database table “Reviews,”you can use the following SQL query:

SELECT (CAST (SUM (Satisfied) ASREAL) / COUNT (*)) AS PositiveRatio
FROM Reviews
WHERE Category = ’gaming’;

This query filters the reviews specifically for the “gaming”category using
the WHERE clause. Then, it calculates the sum of the “Satisfied” column,
which represents the number of positive reviews, using the SUM () function.
The result is then divided by the total number of reviews in the gaming
category, obtained using the COUNT (*) function. The CAST() function
is used to ensure that the division is performed with decimal precision.

The query will return the ratio of positive reviews (satisfied reviews) in the
gaming category as a decimal value.

Executing this query, you should find that a ratio of around 50% of reviews is positive
(i-e., the corresponding reviewer is satisfied).! Finally, let’s see which product category
needs improvements most urgently.

User: What is the product category with the lowest ratio of positive reviews?
GPT: To determine the product category with the lowest ratio of positive reviews
from your SQLite database table “Reviews,”you can use the following SQL

query:

SELECT Category, (CAST(SUM (Satisfied) AS REAL) / COUNT (*)) AS
PositiveRatio

FROM Reviews

GROUP BY Category

ORDER BY PositiveRatio ASC

LIMIT 1;

This query uses the GROUP BY clause to group the reviews by the
“Category”column. Then, it calculates the ratio of positive reviews for
each category by dividing the sum of “Satisfied”values by the total count of
reviews in that category. The results are ordered in ascending order based
on the positive ratio using the ORDER BY clause. Finally, the LIMIT

1 That is not surprising, given that our test data is generated with a uniform random distribution (i.e., the
number of positive and negative reviews should be approximately equal).

36

CHAPTER 2 Chatting with ChatGPT

1 clause ensures that only the category with the lowest positive ratio is
returned.

The query will return the product category along with the corresponding
ratio of positive reviews (satisfied reviews). The category with the lowest
positive ratio will be presented.

Executing this query should return the Phones category, together with the associated
ratio of positive reviews.

In this section, we have seen a second way to use ChatGPT for analyzing data:
instead of applying ChatGPT directly to the data, we use it as a translation mechanism.
In this case, we translate questions about the data (formulated in plain English) into
SQL queries that we can then execute using a corresponding tool (an RDBMS in this
scenario). In later chapters, we will also use it to translate to other formal languages.

We entered questions by hand and then copied our queries to a different interface.
Clearly, this approach is not the most convenient. In chapter 5, we will see how to
build frameworks that automate all those steps.

Summary

Language models can solve various tasks, given instructions in natural language.
Although powerful, language models can produce incorrect output.

You can use ChatGPT via a web interface in your web browser.

ChatGPT enables users to interact with various GPT model versions.

To process text with ChatGPT, enter the text and a task description.

ChatGPT can classify text, given classification categories; it can extract infor-
mation from text, given corresponding questions; and it can produce text
summaries according to user specifications.

ChatGPT is not suitable for processing large data sets directly. However, it can
generate code that processes large data using other tools. To produce code,
enter a description of the data, the task, and the output format.

References

[11 Ji, Z., Lee, N., Frieske, R., et al. (2023). Survey of Hallucination in Natural
Language Generation. ACM Computing Surveys 55 (12), 1-38.

[2] Ramakrishnan, R. and Gehrke, J. (2002). Database Management Systems (3rd ed.).
McGraw Hill New York.

Part 2

Data analysis with
language models

A web interface is sufficient to use language models on small pieces of data. But
how can we scale it up to large data sets?

In chapter 3, we look at OpenAlI’s Python library, a powerful library that enables
you to call language models directly from Python. We discuss the most important
library functions, including various parameters that can be used to fine-tune the
behavior of the language model for your specific use case.

Chapter 4 discusses several mini-projects that use OpenAl’s language models
via the Python library to analyze collections of text documents. For instance, our
projects cover classifying text documents into one of several prespecified categories,
extracting specific snippets of information from text, and clustering similar text
documents together.

Chapter 5 shows how to use language models to analyze structured data: data tables
and graph data. Here, language models are used as an interface, translating questions
about the data (in natural language) into formal queries that can be processed by
specialized analysis tools. For instance, the chapter demonstrates how to use language
models to build interfaces that translate questions to queries in SQL that can be
processed using relational database management systems.

Chapter 6 demonstrates how language models can analyze pictures and even videos.
The sample projects include using language models to answer arbitrary questions
in natural language about pictures, as well as finding pairs of pictures showing the
same person. This chapter also shows how to use language models to automatically
caption videos based on the video content.

Chapter 7 focuses on audio data and covers speech transcription as well as speech
generation. For instance, we see how to use OpenAl’s models to build a voice query
interface, answering spoken questions about tabular data. We also build a translation
tool, translating spoken input in a first language into spoken output in a second
language according to user specifications.

The OpenAl Python Library

This chapter covers

Installing the OpenAl library
Invoking GPT models using Python
Configuration parameters

In the last chapter, we used GPT models via the OpenAl web interface. This works
well as long as we’re just trying to have a conversation or classify and summarize single
reviews. However, imagine trying to classify hundreds of reviews. In that case, using
the web interface manually for each review becomes very tedious (to say the least).
Also, perhaps we want to use a language model in combination with other tools. For
instance, we might want to use GPT models to translate questions to formal queries
and then seamlessly execute those queries in the corresponding tool (without having
to manually copy queries back and forth between different interfaces). In all these
scenarios, we need a different interface.

In this chapter, we’ll discuss a Python library from OpenAl that lets you call
OpenAl’s language models directly from Python. This enables you to integrate calls
to language models as a subfunction in your code. We will be using this library in
most chapters of the book. Therefore, it makes sense to at least skim this chapter
before proceeding to the following chapters.

38

3.1

3.1 Prerequisites 39

Although the current chapter focuses on OpenAl’s Python library, the libraries
offered by other providers of language models (including Anthropic, Cohere, and
Google) are similar.

Prerequisites

First, let’s make sure we have the right environment for OpenAI’s Python library. We
will use the Python programming language, so make sure Python is installed. To do
so, open a terminal, and enter the following command (this command should work
for Linux, macOS, and Windows terminals):

python --version

If this command returns an error message, try replacing python with python3 in the
command and running it again. If Python is installed on your system, you should
see a version number in reply (e.g., “Python 3.10.13”). If not, you will get an error
message. For the following examples, you will need at least Python 3.9 (or a later
version). If Python is not installed on your system, or if your version is below the
required one, visit www.python.org, click Downloads, and follow the instructions to
install Python. You may also want to install an integrated development environment
(IDE). PyDev (www.pydev.org) and PyCharm (www.jetbrains.com/pycharm) are two
of the many IDEs available for Python.

Along with Python, you will need pip, a package-management system used to
install Python packages (the OpenAl library comes in the form of such a package).
For recent Python versions (which you will need in any case), this program is already
installed by default. Nevertheless, it can’t hurt to make sure:

pip --version

Again, you should see a version number if everything is installed properly. Let’s make
sure pip is up to date. The following command should work on Linux, macOS, and
Windows:

python -m pip install --upgrade pip

That’s it! Your system is ready to install the OpenAl Python client.

What if it doesn’t work?

Don’t panic! If any of the previously mentioned steps fail, you may not be able to
execute the following code on your local machine. However, as long as you have
web access, you can use a cloud platform instead. For instance, the Google Colab
platform, accessible at https://colab.research.google.com, enables you to create
notebooks that can execute all of the following code samples. Figure 3.1 shows the
interface after creating a cell installing the OpenAl library (upper cell) and the start
of a corresponding Python program (lower cell). We will discuss library installation
and usage in the following sections.

www.python.org
www.pydev.org
https://colab.research.google.com

40

3.2

CHAPTER 3 The OpenAl Python library

4 N
CO £ DataScienceWithGPT.ipynb v o Share 1B ®
- =%
FRO File Edit View Insert Runtime Tools Help
s + Code + Text L T;:“k - + Gemini ~
Q “ 121 'pip install openai==1.20

{*} 2% Show hidden output

e B G T
o) © import openai

O client = openai.OpenAIlapi key="...")
L
=)
_ + Connected to Python 3 Google Compute Engine backend ® X/

Figure 3.1 The Google Colab platform can be used to run the following examples.

Installing OpenAl’s Python library

Time to start using GPT like a pro! Although the ChatGPT web interface, discussed
in chapter 2, is useful for conversations and trying out new prompts, it is unsuitable
for implementing complex data-processing pipelines. For that, OpenAI’s Python
library is a much better choice, enabling you to invoke language models directly from
Python. First, let’s install the corresponding library. Enter the following command
into a terminal:

pip install openai==1.29

Can | use a different library version?

You might have noticed the reference to a specific version (version 1.29) of the
OpenAl library. The code presented in this and the following chapters has been te-
sted with this version. As the syntax differs slightly across different library versions
(unless you are willing to adapt the code), install this precise version.

Every time we use the OpenAl library, we need to provide a key giving us access to
the OpenAl models (this is required for billing purposes). If you have not yet created
an OpenAl account, go to https://platform.openai.com, click Sign Up, and follow
the instructions. If you have an account but are not currently logged in, provide
your account credentials instead. Make sure to add a payment method in the Billing

https://platform.openai.com

XK 470 3686

3.2 Installing OpenAI’s Python library 41

section, and charge it with a couple of dollars. After that, if you haven’t done so yet,
itis time to generate your secret key.

Go to https://platform.openai.com/account/api-keys. You should see the website
shown in figure 3.2.

(" N\
@ Ovarview Dorumentation APT refarancs Examplas Plavgraurnd (‘5} Help o Personal
ORBANIZATION ApI kevs
i Personal &

Your secrel APT keys are listed below, Please note that we do not display your secret APT keys again
after you generate them,
st Do not share your APT key with others, or expose itin the browser or other client-side code. Tn order to
protect the security of your account, OpenAl may also automatically rotate any API key that we've
Billing found has leaked publicly.
USER SECRET KEY CREATED LAST USED
+ Croate new secrot kay
Default organization
If you belong to multiple organizations, this setting controls which organization is used by default
when making requests with the API keys above.
Ferscnal
Mote: You con olso spoc by which arganizaticn to use far eoch APT roguest, Soc Authentication 1 leor more.
. J

Figure 3.2 Managing secret keys for accessing the OpenAl API

Click the Create New Secret Key button. The interface will show a text string repre-
senting the key. Be sure to copy and store that key! You will not be able to retrieve
the full key again after closing the corresponding window.

Whenever we use the Python library, we need to provide our secret key to link our
requests to the appropriate account. The easiest way to do that is to store the secret
key in an environment variable named 0PENAI_API_KEY. OpenAl will automatically
extract the key from that variable if it exists. The precise command used to set
environment variables depends on the operating system. For example, the following
command works for Linux and macOS (replace the three dots with your key):

export OPENAI API KEY=...

Alternatively, you can set the key on a per-invocation basis by prefixing your calls
to Python with the corresponding assignments. For example, use the following
command to call the code listing presented in the next section while setting the key
at the same time (again, substitute your key for the three dots):

OPENAI_API_KEY=... python listingl.py

Finally, if none of the other options work, you can specify your access key directly in
your Python code. More precisely, right after importing OpenAI’s Python library, we

https://platform.openai.com/account/api-keys

42

3.3

CHAPTER 3 The OpenAl Python library

can pass the API access key as a parameter when creating the client object (which
we discuss in more detail later):

import openai
client = openai.OpenAI(api_key='...")

As before, replace the three dots with your OpenAl access key. The following code
samples assume that the access key is specified in an environment variable and will
therefore omit this parameter. If environment variables don’t work for you, change
the code listings by passing your access key as a parameter.

WARNING Never share your code if it contains your OpenAl access key. Among
other things, having your key would enable others to invoke OpenAl’s models
while making you pay for it.

Assuming you have specified your access key in one way or another, we are now ready
to start calling GPT models using OpenAl’s Python library.

Listing available models

We will use the Python library to retrieve a list of available OpenAl models. Listing 3.1
shows the corresponding Python code. (You can download this and all of the following
code listings from the book’s companion website.) First, we import the OpenAl library
(@). Then we create a client object, enabling us to access library functions (@). Next,
we query for all available OpenAl models (@) and print out the result (@).

import openai © Imports the OpenAl Python library
client = openai.OpenAI () @ Creates an OpenAl client
models = client.models.list() € Gets available OpenAl models

for model in models.data: @ Prints out the retrieved models
print (model)

You should see a result similar to the following:

Model (id='dall-e-3', created=1698785189,
object='model', owned by='system')

Model (id='whisper-1', created=1677532384,
object='model', owned by='openai-internal')

Model (id='GPT-40-2024-05-13"', created=1715368132,
object='model', owned by='system')

Model (id='davinci-002', created=1692634301,
object='model', owned by='system')

Model (id='GPT-40', created=1715367049, © GPT-40
object='model', owned by='system')

@ Fine-tuned model version
Model (id='curie:ft-personal-2022-01-10-16-52-53",
created=1641833573, object='model', owned by='trummerlab')

3.4

3.4 Chat completion 43

Model (id='davinci:ft-personal-2022-01-13-19-59-51",
created=1642103991, object='model', owned by='trummerlab')

Model (id='ft:gpt-3.5-turbo-0613:trummerlab: :8glJHebV',
created=1707585607, object='model', owned by='trummerlab')

Each modelis described by an ID (e.g., GPT-40 (@)). We will use this ID to tell OpenAl
which model we want to use to process our requests. Besides the ID, each model
comes with a creation timestamp and information about model ownership (owned_by
field). In most cases, models are owned by OpenAl (marked, for example, system
or openai-internal). In some cases, however, models are owned by trummerlab
(@), the name of the account used by this book’s author. Those models are not
publicly accessible but private to the owning account. You will not see those models
when executing the code using your account. They are created by a process called
Jine-tuning from the publicly available base models.

What is fine-tuning?

By default, language models such as GPT-40 are trained to be versatile, meaning
they can, in principle, perform any task. But sometimes we don’t want a model that
is versatile but rather a model that does very well on one specific task. Fine-tuning
enables us to specialize a model for a task we care about. We discuss fine-tuning
in more detail in chapter 9.

Chat completion

Almost all the code in this book uses the same functionality of the OpenAl Python
library: chat completion. With chat completion, your model generates a completion
for a chat, provided as input. The input can contain various types of data, such as
text and images. We will exploit those features in the following chapters but restrict
ourselves to text for the moment. Chat completion is also used in the background of
OpenAl’s ChatGPT web interface. Given the chat history as input (which includes
the latest message as well as prior messages, possibly containing relevant context),
the model generates the most suitable reply.

To use chat completion from Python, we first need a format to describe the chat
history. This is part of the input we’re providing for chat completion. In OpenAlI’s
Python library, chats are represented as a list of messages. Each message in turn
is represented as a Python dictionary. This Python dictionary specifies values for
several important properties of the message. At the very least, we need to specify two
important attributes for each message:

The role attribute, which specifies the source of a message
The content attribute, which specifies the content of a message

Let’s start by discussing the role attribute. As you know from the last chapter, a chat
with GPT models is a back-and-forth series of messages, alternating between messages

44

CHAPTER 3 The OpenAl Python library

written by the user and messages written by the model. Accordingly, we can specify
the value user for the role attribute to identify a message as written by the user.
Alternatively, we can specify the value assistant to mark a message as generated
by the language model. A third possible value for the role attribute is system. Such
messages are typically used at the beginning of a chat history. They are meant to
convey generic guidelines to the model, independent of the specific tasks submitted
by users. For instance, a typical system message could have the content “You are
a helpful assistant,” but more specialized versions (e.g., “You are an assistant that
translates questions about data sets into SQL queries”) are also possible. We will not
use system messages in this book, but feel free to experiment and try adding your
own system messages to see if they influence the model output.

The content attribute specifies the content of a message. In this chapter, we will
restrict ourselves to text content. In later chapters, we will see how language models
can be used to process more diverse types of content. In the following code samples,
we will only need to specify a single message in our chat history. This message contains
instructions describing a task that the language model should solve, as well as relevant
context information. For instance, the following chat history encourages the model
to generate a story for us:

t{
'role':'user', © Message from user
'content':'Tell me a story!' @ Task specification

1

The list of messages contains only a single message. This message is marked as
originating from the user (@) and describes the previously mentioned task in its
content (@). As a reply, we would expect the model to generate a story following the
input instructions.

How can we invoke a model for chat completion? This can be realized with just a
few lines of Python code. First, we need to import the OpenAl Python library (@)
and create a client object (@):

import openai © Imports the OpenAl Python library
client = openai.OpenaI() @ Creates the OpenAl client

We will use the client object for all of the following invocations of the language
model. The previous code appears in almost all of our code samples. Remember that
you may need to pass the OpenAl access key manually as a parameter when creating
the client (unless you specify your access key in an environment variable, which is the
recommended approach). After creating the client, we can issue chat completion
requests as shown here:

result = client.chat.completions.create (
model='GPT-40', @ Selects a model
messages=[{ @ Specifies input messages

'role':'user',
'content':'Tell me a story!'

1)

3.4 Chat completion 45

We use the client.chat.completions.create function to create a new request. The
model parameter (@) specifies the name of the model we want to use for completion.
In this case, we’re selecting OpenAl’s GPT-40 model, which can process multimodal
data. We will use this model for most of the code samples in this book. Next, we
specify the chat history as input via the messages parameter (@). This is the chat
history discussed before, instructing the model to generate a story.

Let’s put it all together. The following listing (available as listing 2 in the chapter
3 section on the book’s companion website) uses GPT-4o to generate a story.

Listing 3.2 Using GPT-4o for chat completion

import openai <— Imports the OpenAl Python library
client = openai.OpenAI() <—— Creates an OpenAl client

result = client.chat.completions.create(<—— Invokes chat completion
model="'GPT-40"', <— Selects a model
messages= [{ <~—— Specifies input messages
'role':'user',
'content':'Tell me a story!'
13D

print (result)

Running the code should produce a result such as the following (your precise story
may differ due to randomization):

ChatCompletion (
id='chatcmpl-9YKmJCE8SITsKyI557T8KTuX3IxXWN',
choices=| © List of completions
Choice (
finish reason='stop', @ Termination condition
index=0,

logprobs=None,

message=ChatCompletionMessage (© Completion message
content="0f course! Here's a story that ... ",
role='assistant',
function call=None,
tool_calls=None)

1,
created=1717970051,
model="'GPT-40-2024-05-13",
object="'chat.completion',
system_fingerprint='fp 319be4768e',
usage=CompletionUsage (O Token usage
completion tokens=810,
prompt_tokens=12,
total tokens=822

46

3.5

3.5.1

CHAPTER 3 The OpenAl Python library

Let’s discuss the different components of that result. First, we have a list of completion
alternatives (@) (objects of type Choice). In our case, that list contains only a single
entry. This is the default behavior, although we can ask for multiple alternative
completions by setting the right configuration parameters (discussed in the next
section). The finish reason flag (@) indicates for each completion the reason to
stop generating. For instance, this can be due to reaching a length limit on generated
text. The stop value indicates that the language model was able to generate complete
output (as opposed to reaching a length limit). The actual message (@) content is
abbreviated, and in all likelihood, you will see different stories if you invoke the code
repeatedly.

Besides the completions themselves, the result contains metadata and usage stati-
stics (@). More precisely, we find values for the following properties:

completion_tokens—The number of generated tokens
prompt_tokens—The number of tokens in the input
total_tokens—The number of tokens read and generated

Why would we care about the number of tokens? Because pricing for most OpenAl
models is proportional to the number of tokens read and generated. For instance,
at the time of writing, using GPT-40 costs $5 per million tokens read and $15 per
million tokens generated. Note the difference in pricing between tokens read and
generated. Typically, as in this case, generating tokens is more expensive than reading
tokens. The pricing depends not only on the number of tokens but also on the model
used. For example, replacing GPT-40 with the GPT-3.5 Turbo model (a slightly less
powerful GPT version) cuts costs by a factor of 10. Before analyzing large amounts
of data with language models, choose the appropriate model size for your task and
wallet.

Customizing model behavior

You can use various parameters to influence how the model replies to your input.
These parameters can be specified in addition to the model and messages parameters
when invoking the chat.completions.create function. In this section, we discuss
different categories of parameters, classifying parameters by the aspect of model
behavior they influence.

Configuring termination conditions

When we invoke a model for chat completion, it generates output until a stopping
condition is met. The two parameters discussed next enable us to configure when
text generation stops.

The max_tokens parameter specifies the maximum number of tokens (i.e., the
atomic unit at which language models represent text) generated during completion.
A token corresponds to approximately four characters, and a typical paragraph
contains around 100 tokens. The maximum admissible value for this parameter is
determined by the model used. For instance, ada, one of the smallest GPT versions,
allows up to 2,049 tokens, whereas GPT-40 supports up to 128,000 tokens. Keep

3.5.2

3.5 Customizing model behavior 47

in mind that the maximum number of tokens supported by the model includes
tokens read and tokens generated. As max_tokens refers only to the number of
tokens generated, you should not set it higher than the maximum number of tokens
supported by the model used minus the number of tokens in the prompt.

As a general rule, setting a reasonable value for max_tokens is almost always a
good idea. After all, we’re paying for each generated token, and setting a bound on
the number of tokens enables you to bound monetary fees per model invocation.

In some scenarios, specific text patterns indicate the end of the desired output.
For instance, when generating code, it can be a string specific to the corresponding
programming language indicating the end of the program. On the other hand, when
generating a fairy tale, it can be the string “and they lived happily ever after!” In those
scenarios, we might want to use the stop parameter to configure the OpenAl library
to stop generating output whenever a specific token sequence appears. In some
cases, there is only one token sequence indicating termination. In those scenarios,
we can directly assign the stop parameter to the corresponding string value. In
other scenarios, there are multiple candidate sequences that indicate termination.
In those cases, we can assign the stop parameter to a list of up to four sequences.
Text generation terminates whenever any of those sequences is generated.

Note that you can use both of the previously mentioned parameters together. In
those cases, output generation stops whenever the length limit is reached or one of
the stop sequences appears (whichever happens first).

Configuring output generation

The parameters we just discussed enable you to choose when the output terminates.
But how can you influence the output generated until that point? Here, OpenAl
offers a few parameters that enable you to bias the way in which GPT models select
output text.

Several parameters enable you to influence how “repetitive” the generated
output should be. More precisely, those parameters allow you to influence whether
generating the same tokens repeatedly is desirable or not.

The presence_penalty parameter enables you to penalize chat completions that
use the same tokens repeatedly. The presence penalty is a value between —2 and +2
(with a default value of 0). A positive penalty encourages the model to avoid reusing
the same tokens. A negative penalty, on the other hand, encourages the model to
use the same tokens repeatedly. The higher the absolute value, the stronger the
corresponding effect.

The frequency_ penalty relates to the prior parameter but enables a more fine-
grained penalization scheme. The presence penalty parameter is based on the
mere presence of a token. For example, we do not differentiate between a token that
appears twice and one that appears hundreds of times. The frequency penalty is used
as a factor, multiplying the number of prior appearances of a token when aggregating
its score (which is used to determine whether the token should appear next). Hence,
the more often a token was used before, the less likely it is to appear again. Similar

48

3.5.3

CHAPTER 3 The OpenAl Python library

to the presence penalty, the frequency_penalty parameter takes values between —2
and +2 with a default setting of 0. A positive penalty factor encourages GPT models
to avoid repeating the same token, whereas a negative value encourages repetitions.

Sometimes we are only interested in one of a limited set of eligible tokens. For
instance, when classifying text, the set of classes is typically determined a priori. If so,
let’s tell the model about it! The logit_bias parameter allows mapping token IDs to
a bias factor. A high bias factor encourages the model to consider the corresponding
token as output. A sufficiently low bias score essentially prevents the model from
using the token. A sufficiently high score almost guarantees that the corresponding
token will appear in the output.

Using the logit_bias parameter avoids generating useless output in situations
where we can narrow the set of reasonable tokens. The value for logit bias is a
Python dictionary that maps token IDs to values between —100 and +100. Values
between -1 and +1 are more typical and still give the model room to consider tokens
with a low value (or to avoid using tokens that are associated with higher values). But
how do we find the token IDs associated with relevant words? For that, we can use the
GPT tokenizer tool, available at https://platform.openai.com/tokenizer?view=bpe.
Simply enter the words you want to encourage (or ban), and the associated token
IDs will be displayed. Note that multiple tokenizer variants are available, associated
with different models. Select the right tokenizer for your model (because otherwise,
the token IDs may be incorrect).

Configuring randomization

How do GPT models select the next output token? At a high level of abstraction, we
calculate scores for all possible output tokens and then select a token based on those
scores. Although tokens with higher scores tend to have better chances of being
selected, we might not always want to select the token with the maximum score. For
instance, think back to chapter 2, where we were able to regenerate replies for the
same input, potentially leading to different results. This can be useful if the first
output does not quite satisfy our requirements. If always selecting the tokens with
the highest scores, regenerating an answer would be unlikely to change the output.
Hence, to enable users to get diverse replies, we need to introduce a certain degree
of randomization when mapping scores to output tokens.

Of course, decoupling the output too much from token scores—that is, using too
much randomization—may lead to useless output (at the extreme, the output no
longer connects to the input and does not follow our instructions). On the other
hand, using too little randomization can lead to outputs that are less diverse than
desired. Choosing the right degree of randomization for a specific scenario can take
some experimentation. In each case, OpenAl offers multiple parameters that enable
you to fine-tune how token scores translate to output tokens. We will discuss those
parameters next.

One of the parameters most commonly used to tune randomization is the
temperature parameter. A higher temperature means more randomization, whereas

https://platform.openai.com/tokenizer?view=bpe

3.5.4

3.5 Customizing model behavior 49

a lower temperature corresponds to less randomization. A low degree of randomiza-
tion means the token with the highest score is very likely to be selected. A very high
degree of randomization means tokens are (almost) selected with equal probability,
independently of the scores assigned by the model. The temperature parameter ena-
bles you to thread the needle between those two extremes. Values for this parameter
are chosen between 0 and 2 with a default of 1.

Temperature is one possibility when choosing the degree of randomization. The
top_p parameter is an alternative approach. (Itis not recommended that you alter
both temperature and top_p in the same invocation of the language model.) Based
on their scores, we can associate a probability of being “correct” with each possible
output token. Now imagine that we are sorting those tokens in decreasing order of
probability. We can reduce the degree of randomization by focusing only on the
first few tokens: we neglect tokens with lower probability. How many tokens should
we consider? Instead of fixing the number of eligible tokens directly, the top_p
parameter fixes the probability mass of those tokens. In other words, we add tokens to
the set of eligible tokens in decreasing order of probability. Whenever the sum of
probability values of all selected tokens (the probability mass) exceeds the value of
top_p, we stop adding tokens. Finally, we pick the next output token among those
eligible tokens.

As the top_p parameter describes a probability, its values are taken from the
interval between 0 and 1. Similar to temperature, choosing a higher value leads to
more randomization (because even tokens with lower probability become eligible).

As soon as we are using a certain degree of randomization, it becomes useful to
generate multiple answers for the same input prompt. After that, we can choose the
preferred answer via postprocessing. For instance, assume that we are generating
multiple SQL queries for the same input prompt. To select the preferred answer, we
can try executing them on a target database and discard the queries that result in a
syntax error message. Of course, we can simply call the language model repeatedly
with the same prompt. However, it is more efficient to call the language model once
and configure the number of generated replies. The parameter n determines the
number of generated replies. By default, this parameter is set to 1 (i.e., only a single
answer is generated). You may choose a higher value to obtain more replies. Note that
using a higher value for this parameter also increases per-invocation costs (because
you pay for each token generated, counting tokens across different replies).

Customization example

Let’s try some of the parameters in our code. The following listing prompts GPT-40
to write a story, this time using some of the parameters we’ve discussed to customize
chat completion.

import openai
client = openai.OpenAI ()

50

CHAPTER 3 The OpenAl Python library

result = client.chat.completions.create (
model='GPT-40"',
messages=[{
'role':'user',
'content':'Tell me a story!'

1.
max_tokens=512, @ Limits the output length
stop='happily ever after', @ Sets a stopping condition
temperature=1.5, © Sets temperature
presence penalty=0.5, O Penalizes repetitions
logit bias={14844:-100}) © Adds bias
print (result.choices[0] .message.content)

First, to avoid getting a lengthy story, we set the maximum number of tokens to 512
(@). This should suffice for a few paragraphs of text. To avoid generating more
content than necessary, we define a stop sequence as well: “happily ever after” (@).
We do so, hoping that any reasonable story will, of course, end with the popular
expression “and they lived happily ever after.” This assumption is certainly simplifying.

Next, we set the temperature to 1.5 (@), allowing a certain degree of randomiza-
tion. Having an overly repetitive story is boring. Therefore, we set a positive presence
penalty (presence_penalty=0.5) (@), discouraging GPT-4o from reusing the same
tokens. Finally, we don’t want a scary story (perhaps we want to read it to our kids),
so we penalize the word dragon (we obtain the corresponding token ID as described
in section 3.5.2) (@).

Let’s see what we get! For instance, in a sample invocation, GPT-40 generates the
following story:

Once upon a time, in a quaint village nestled between rolling hills and dense forests,
there lived a girl named Elara. She was known for her curiosity and adventurous
spirit, traits that often led her to explore the uncharted parts of her village. One
crisp autumn morning, Elara decided to venture into the Whispering Woods, a
place shrouded in mystery and legend. The villagers often spoke of the woods as
a place where magic lingered, but also one that nobody dared to enter beyond the
edge. Equipped with her trusty satchel and a heart full of excitement, Elara set
off with the sunvise. As she walked deeper into the woods, the whispers of rustling
leaves seemed to greet her, and she felt an odd sense of familiarity. She wandered
through thickets and climbed over fallen logs until she stumbled wpon a hidden
grove, bathed in shimmering light. In the center of the grove stood an ancient tree
with silvery leaves, its trunk twisted like spiraling tendrils of smoke. Elara was
mesmerized; it looked unlike any tree she had ever seen. She approached it cautiously
and noticed a small, ornate chest nestled among its roots. Her heart racing, Elara
opened the chest and found inside a delicate, golden locket. As soon as she touched
il, the forest seemed to come alive. The whispers grew louder, forming words that she
could understand. “Brave heart, you have found the Locket of Eternia,” the voice
murmured. “It grants the bearer one wish.” Elara’s mind raced with possibilities,
but she knew what her heart desired most: to bring joy and prosperity to her beloved
village. Clutching the locket, she whispered her wish. In an instant, a warm glow

3.5.5

Summary 51

enveloped her, and she felt a surge of energy. The grove shimmered momentarily
and then returned to its tranquil stillness. Elara knew something extraordinary had
happened. As she returned home, she noticed subtle changes—the crops seemed more
vibrant, the animals healthier and the village air filled with a sense of contentment.
The villagers welcomed her back, their faces glowing with happiness. Elara never
revealed the secret of the Whispering Woods or the Locket of Eternia to anyone.
She simply smiled whenever anyone commented on the newfound prosperity of the
village. She knew that sometimes, the greatest magic lies not in what is seen, but
in the courage to follow one’s heart. And so, Elara’s village thrived, becoming a
beacon of joy and harmony. All because one brave girl dared to listen to the whispers
of the woods. And she lived
Happily ever after! It turns out that our stop sequence, the expression “happily ever
after,” was indeed used at the end of the story (and is therefore omitted in the output
returned by GPT-40). Try a few more parameter settings, and see how the result
changes as a function of the configuration.

Further parameters

We have discussed the most important parameters for data-analysis purposes. You
can use each of them when requesting a completion from OpenAI’s GPT models.
Note that there are more parameters beyond the ones mentioned in this chapter.
OpenAl’s API reference documentation (https://platform.openai.com/docs/api
-reference/completions) describes all parameters in detail.

Summary

You can use OpenAl’s language models via a Python API. Other providers offer
similar libraries for accessing their models.

To use OpenAl’s library, create a client object.

You can use OpenAl’s models to complete chats. Chats to complete are specified
as a list of messages.

Each chat message is characterized by content and a role. Roles can be one of
user, assistant, Or system.

Obtain chat completions via the chat .completions.create function.

You can configure models using various parameters:

— The max_tokens parameter limits the number of tokens generated.
— stop lets you define phrases that stop text generation.

— You can penalize or encourage specific tokens via logit_bias.

— presence_penalty penalizes repetitive output.

— frequency penalty penalizes repetitive output.

— temperature chooses the degree of randomization.

— top_p determines the number of output tokens considered.

— n chooses the number of generated completions.

https://platform.openai.com/docs/api-reference/completions
https://platform.openai.com/docs/api-reference/completions

Analyzing text data

This chapter covers

Classifying text
Extracting information
Clustering documents

Text data is ubiquitous and contains valuable information. For instance, think of
newspaper articles, emails, reviews, or perhaps this book you are reading! However,
analyzing text via computational means was difficult until only a few years ago. After
all, unlike formal languages such as Python, natural language was not designed to
be easy for computers to parse. The latest generation of language models enables
text analysis at almost human levels for many popular tasks. In some cases, the
performance of language models for text analysis and generation has even been
shown, on average, to surpass the capabilities of humans [1].

In this chapter, we will see how to use large language models to analyze text. In
certain ways, analyzing text data is a very “natural” application of language models.
They have been trained on large amounts of text and can be applied directly for text
analysis (i.e., without referring to external tools for the actual data analysis). This
chapter covers several popular flavors of text analysis: classifying text documents,
extracting tabular data from text, and clustering text documents into groups of
semantically similar documents. For each of these use cases, we will see example code
and discuss variants and extensions.

52

4.1

4.2

4.1 Preliminaries 53

Classification, information extraction, and clustering are three important types
of text analysis but by no means the only ones you may need in practice. However,
working through the examples in this chapter will enable you to create custom
data-processing pipelines for text data based on language models.

Preliminaries

Let’s make sure your system is set up properly for the example projects. The following
examples use OpenAl’s GPT model series, accessed via OpenAl’s Python library. This
library was discussed in detail in chapter 3. Make sure to follow the instructions in
chapter 3 to be able to execute the example code.

WARNING OpenAlI’s Python library is changing quickly. The code in this chap-
ter has been tested with version 1.29 of the OpenAl Python library but may not
work with different versions.

Besides the OpenAl library, we will use the popular pandas library. pandas is a popular
library for handling tabular data (which we will use as input and output format).
We will only use basic functionality from that library and explain the corresponding
commands as they occur in the code. Make sure pandas is installed (e.g., try import
pandas in the Python interpreter); if it isn’t, install it by entering the following
command in the terminal:

pip install pandas==2.2

Finally, for the last section in this chapter, you will need the clustering algorithms
from the scikit-learn library. Run the following command in the terminal to install
the appropriate version:

pip install scikit-learn==1.3

The following sections contain code for three mini-projects that use language models
for text analysis. No need to type in the code—you can find all the code on the
book’s companion website in the resource section for this chapter. Although you
can execute the code on your own data, this book comes with a couple of sample
data sets we use in the examples (also on the companion website). And now it’s time
to use language models for text classification!

Classification

So here you are, planning your Saturday evening and deliberating whether to go and
see the newest installation of your favorite movie franchise. But is it worth it? Your
social media feeds keep filling up with comments from your friends (and your friend’s
friends), expanding on their movie experiences. You could browse through them
manually, reading each one to get a better sense of whether the majority opinion
about the movie is positive or negative. But who has time to do that? Can’t language
models help us to automate this task?

54

4.2.1

CHAPTER 4 Analyzing text data

Indeed they can. What we have here is an instance of one of the most classic
text-processing problems: we have a text and want to classify it, mapping it to one of
a fixed set of categories. In this case, the text to classify is a movie review. We want to
classify it as positive (i.e., the writer thinks it was a great movie, and you should go see
it!) or negative (save your money!). That means we have two categories. Table 4.1
shows extracts from a few example reviews with the associated class labels. A review
praising a movie as “well realized” is clearly positive, whereas one describing the
movie as “obviously weak, cheap” is negative. You can find these and a few other
reviews in a corresponding file on the book’s companion website.

Table 4.1 Extracts from movie reviews and associated class labels

Review Class
First of all this movie is a piece of reality very well realized artistically. ... Positive
Re-titled “Gangs, Inc.”, this is an obviously weak, cheap mobster melodrama. ... Negative

Classifying movie reviews is only one of many use cases for text classification. As
another example, imagine trying to sort through your email inbox. Wouldn’t it
be nice to automatically classify emails based on their content (e.g., using custom
categories such as Work, Hobby, Childcare, etc.)? That’s yet another instance of text
classification, this time with more than two categories. As a final example, imagine
that you’re creating a website that enables users to leave free-text comments. Of
course, you don’t want to show potentially offensive comments and would like to
filter them out automatically. Again, that means you’re classifying text comments
into one of two categories (Offensive and Inoffensive). We will now see how language
models can easily be used for each scenario.

Overview

We’ll focus on classifying movie reviews (or, really, any type of review) into Positive
(great movie!) and Negative (stay home!) reviews. For that, we’ll use OpenAl’s
language models. We’ll assume that we have collected reviews to classify in a file
on disk. The code we develop will iterate over all reviews, classify each using the
language model, and return the classification result for each review.

But how can we classify reviews? We will use OpenAl’s Python library, presented
in chapter 3. For each review to classify, we will first generate a prompt. The prompt
describes a task to a language model. In our case, that task assigns a review to one
of our two categories (Positive or Negative). For instance, consider the following
prompt as an example:

This movie is a piece of reality very well realized ... © Review
Is the sentiment positive or negative? 0 Question
Answer ("Positive"/"Negative"): (3) Output format

This prompt contains the review to classify (@), a question describing the classification
task (@), and a final statement describing the desired output format (€). We will

4.2.2

4.2 Classification 55

construct prompts of this type for each review, send the prompt to the language
model, and (hopefully) get back one of the two possible answers (Positive or Negative).
Figure 4.1 illustrates the high-level classification process for each review.

Review
[Generate prompt]
Prompt
[el et] Figure 4.1 For each review, we generate a prompt that
contains the review, together with instructions describing
the classification task. Given the prompt as input, the
Classification result language model outputs a class label for the review.

Creating prompts
Given a review, we generate a prompt instructing the language model to classify it.
All the prompts we generate for classification follow the same prompt template.

Reminder: What is a prompt template?

We briefly mentioned prompt templates in chapter 1. A prompt template is a text
that contains placeholders. By substituting actual text for these placeholders, we
obtain a prompt that we can send to the language model. We also say that a prompt
instantiates a prompt template if the prompt can be obtained by substituting the
template’s placeholders.

The example prompt from the previous section instantiates the following prompt

template:

[Review] © Review (placeholder)
Is the sentiment positive or negative? @ Question
Answer ("Positive"/"Negative"): (3) Output format

Our template contains only a single placeholder: the text of the review to classify
(@). For each review, we will replace this placeholder with the actual review text.
We also instruct the language model on what to do with the review text (@) (check
whether the underlying sentiment is positive or negative) and define the output
format (@). The latter step is important because there may be many ways to express
the underlying sentiment: for example, “P” for positive and “N” for negative, or a
longer answer such as “The review is positive.” If we don’t explicitly tell the language
model to use a specific output format, it may choose any of these possibilities! In
our scenario, we ultimately want to aggregate the classification results to learn the

56

4.2.3

CHAPTER 4 Analyzing text data

majority opinion (do most people like the movie or not?), and aggregating the results
from each review becomes much simpler if all the classifications follow the same
output format.

The following function follows the template to generate a prompt for a given
review (specified as the input parameter text):

def create prompt (text) :
task = 'Is the sentiment positive or negative?'
answer format = 'Answer ("Positive"/"Negative")'
return f'{text}\n{task}\n{answer format}:'

The result of the function is the prompt, instantiating the template for the input
review.

Calling the model

Next, we send generated prompts to a language model to obtain a solution. More
precisely, we are using OpenAI’s GPT-40 model, OpenAl’s latest model at the time of
writing. As this is one of OpenAlI’s chat models, optimized for multistep interactions
with users, we use the chat completions endpoint to communicate with the model. As
discussed in more detail in chapter 3, this endpoint expects as input a history of prior
messages (in addition to the specific model name). Here, we have only one prior
“message”: the prompt. We classify it as a user message, encouraging the model to
solve whatever task is described in the message. For instance, we can send prompts
to the language model and collect the answers using the following piece of code
(assuming that prompt contains the previously generated prompt text):

import openai
client = openai.OpenAI ()

response = client.chat.completions.create (
model="'gpt-4o0',
messages= [
{'role':'user', 'content':prompt}
]
)

However, using this code directly is problematic. OpenAl’s GPT models are hosted
online and accessed remotely. This creates opportunities for failed attempts to reach
the corresponding endpoint: for example, due to a temporary connection loss.
Because of that, it is good practice to allow for a couple of retries when calling the
model. In particular, when processing large data sets requiring many consecutive calls
to OpenAlI’s models, the chances of at least one unsuccessful call increase. Instead of
interrupting computation with an exception, it is better to wait a few seconds before
starting another try. Here is a completed version of the previous code—a function
that calls the language model with automated retries:

4.2.4

4.2 Classification 57

import openai
client = openai.OpenAI ()

def call 1llm(prompt) :
for nr_retries in range (1, 4):
try:
response = client.chat.completions.create (
model="'gpt-40"',
messages= [
{'role':'user', 'content':prompt}
]
)
return response.choices[0] .message.content
except:
time.sleep (nr_retries * 2)
raise Exception('Cannot query OpenAI model!')

The call_lm function allows up to three retries with an increasing delay between
them. This delay is realized by a call to the time.sleep function (using Python’s time
library) whenever an exception (indicating, for instance, a temporary connection loss)
is encountered. After three retries, the function fails with an exception (assuming,
pessimistically, that whatever problem prevents us from contacting OpenAl will not
be resolved any time soon). Whenever the call succeeds, the function returns the
corresponding result.

End-to-end classification code

It’s time to put it all together! The next listing shows the code that matches the
classification process we’ve discussed. It also contains the function for generating
prompts (@) and the one for calling the language model ().

Listing 4.1 Classifying input text by sentiment (positive, negative)

import argparse @ Imports libraries
import openai

import pandas as pd

import time

client = openai.OpenAI ()

def create_ prompt (text) : @ Generates classification prompts
" Generates prompt for sentiment classification.

Args:
text: classify this text.

Returns:
input for LLM.
nnon
task = 'Is the sentiment positive or negative?'
answer format = 'Answer ("Positive"/"Negative")'

58

def

def

CHAPTER 4 Analyzing text data

return f'{text}\n{task}\n{answer format}:'

call 1llm(prompt) : © Calls the large language model
"r v Query large language model and return answer.
Args:
prompt: input prompt for language model.
Returns:

Answer by language model.
W
for nr_retries in range(1l, 4):
try:
response = client.chat.completions.create (
model="'gpt-40"',
messages=[
{'role':'user', 'content':prompt}
]
)
return response.choices[0] .message.content
except:
time.sleep(nr retries * 2)
raise Exception('Cannot query OpenAI model!')

classify (text) : O Classifies one text document
nmrn Classify input text.
Args:

text: assign this text to a class label.
Returns:

name of class.
mounon
prompt = create prompt (text)
label = call llm(prompt)
return label

if name == ' main_': @ Reads text, classifies, and writes result

parser = argparse.ArgumentParser () @ Defines command-line arguments
parser.add _argument ('file path', type=str, help='Path to input file')
args = parser.parse_args()

df = pd.read csv(args.file path) @ Reads input
df['class'] = df['text'].apply(classify) O (Classifies text
statistics = df['class'].value_counts () (9] Generates output

print (statistics)
df .to_csv('result.csv')

First, let’s discuss the libraries used in listing 4.1 (@). We will reuse those libraries for
the following projects, so it makes sense to have a closer look at them (and why we need
them here). We want to start our code from the command line, specifying relevant

4.2.5

4.2.6

4.2 Classification 59

parameters (e.g., the path of the input data) as arguments. The argparse library
features useful functions to specify and read out such command-line arguments.
Next, we need the openai library, discussed in chapter 3, to call OpenAI’s language
model from Python. The pandas library supports standard operations on tabular
data. Of course, tabular data is not our focus in this chapter. However, we will store
text documents and related metadata as rows in tables, so the pandas library comes in
handy. Finally, as discussed previously, we use the time library to implement delayed
retries when calling the language model.

Classifying documents

The classification of a single text document (@) combines the two functions discussed
previously. Given an input text to classify, the code first creates a corresponding
prompt (call to create_prompt) and then generates a suitable reply via a call to the
language model (call to call_11m). The result is assumed to be the class label and is
returned to the user.

Now we put it together (@). This part of the code is executed when invoking the
Python module from the command line and uses the functions we’ve introduced.
The initial if condition (@) ensures that the following code is only executed when
invoking the module directly (instead of importing it from a different module).

First (@), we define command-line arguments. We need only one argument here:
a path to a .csv file containing the data to classify. We assume that each row contains
one text document and that the text to classify is contained in the text column. We
parse command-line arguments and make their values available in the args variable.

Next, we load our input data from disk (@). We assume that data is stored as a .csv
file (comma-separated value): that is, a header line with column names, followed by
lines containing data (fields are separated by commas, as the name suggests). Here,
the pandas library comes in handy and enables us to load such data with a single
command. The df variable then contains a pandas DataFrame containing data from
the input file. We retrieve the DataFrame text column (@) and apply the previously
defined classify function to each row (using pandas’ apply method). Finally (@),
we generate and print out aggregate statistics (the number of occurrences for each
answer generated by the model) and write the resulting classifications into a file
(result.csv).

Running the code

On the book’s companion website, download the file reviews.csv. This file contains a
small number of movie reviews that we can use for classification. The file contains two
columns: the review text and the associated sentiment (neg for negative sentiment
and pos for positive sentiment). Of course, our goal is to detect such sentiments
automatically. However, having the ground truth also enables us to assess the quality
of the classifications.

You can test the code for classification as described next (the following commands
have been tested on a Linux operating system). Using a terminal, change to the

60

4.2.7

CHAPTER 4 Analyzing text data

directory containing a Python module (listingl.py) with the code in listing 4.1.
Then, run the following command (replacing python with the name of your Python
interpreter, such as python3, if needed):

python listingl.py reviews.csv

Here, we assume that the input file (reviews.csv) is stored in the same repository as
the code (otherwise, you have to substitute the corresponding path for the filename).
Typically, the code should not take more than a few seconds to execute (slightly
more if your connection is unstable, requiring retries). If execution succeeds, the
only output you will see summarizes the number of labels assigned for each of the
two possible classes.

After executing the code, you will find a result.csv file in the same repository. In
addition to the columns of the input file, the result file contains a new class column.
This column contains the classification results (positive and negative). Compare the
label assigned by our classifier to the ground-truth sentiment. You will find that the
classification is consistent in a majority of cases. Not bad for a few lines of Python
code, right?

Trying out variants

At this point, it is a good idea to play a bit more with the code and the data to
get a better sense of how it works. For instance, try writing a few movie reviews
yourself! For which reviews is the classification reliable, and where is it challenging?
Also try a few variants of the prompt. Which instructions lead to better accuracy,
and which degrade performance? To take just one example variation, try removing
the part of the prompt that defines the output format precisely (the line Answer
("Positive” /"Negative”)).Now try running the program with the changed prompt.
What happens? In all likelihood, you will see more than two labels in your classification
result (in the output of the program), including, for instance, abbreviations (e.g., “P”
and “N”) as well as overly detailed answers (e.g., during testing, GPT-4o generated
replies such as “The sentiment of this review is positive.”). In chapter 9, we evaluate
the effect of different prompts on the model’s output quality.

You may also want to vary the model used for extraction. How about using one
of the smaller model versions, such as GPT-3.5 (which is significantly cheaper per
token processed)? And how about the model configuration? Listing 4.1 only uses two
parameters (the model name and the message history), both of which are required.
However, in chapter 3, we saw various configuration parameters that can be ap-
plied here. For instance, try changing the temperature parameter (e.g., setting
temperature to 0 will give you more deterministic results), or limit the length of the
desired output! In rare cases, GPT models may generate output text that is longer
than the desired classification result (which consists of a single token). You can avoid
that by limiting the output length using the max_tokens parameter. At the same time,
instead of restricting the output format only via instructions in the prompt, you may

4.3

4.3 Text extraction 61

increase the likelihood of the two possible results (positive and negative) using the
logit_bias parameter. We discuss model tuning further in chapter 9.

As yet another variant, try changing the classification task! For instance, it is
relatively easy to classify using a different set of categories. All it takes is changing the
instructions in the prompt (outlining all answer options as before). By changing a few
lines of code, you can even obtain a versatile classification tool that enables users to
specify the classification task and corresponding classes as additional command-line
arguments. For example, beyond movie reviews, you can use this tool to categorize
newspaper articles into one of several topic categories or to classify emails as either
Urgent or Nonurgent. By now, you are hopefully convinced that language models
enable text classification with relatively high quality and moderate implementation
overheads. Time to broaden our scope to different tasks!

Text extraction

Imagine that, given your expertise in data analysis with language models, you recently
landed a highly sought-after job at Banana (a popular company producing various
consumer electronics). The moment you sit down at the desk of your new office,
emails from enthusiastic students inquiring about summer internships start rolling
in. Having a summer intern would be nice, but how do you choose the best match?
Ideally, you would like to compile a table comparing all applicants in terms of their
GPA, their degree, the name of the company at which they did their most recent
internship (if any), and so on. But combing through emails to compile that table
manually seems tedious. Can’t you automate that?

Of course you can. Let’s use language models to analyze emails to extract all the
relevant factors to choose our lucky summer intern. What we have here is, again, a
standard problem in text analysis: information extraction! In information extraction,
we generally extract structured information (e.g., a data table) from text. Here, we
consider emails (from applicants) as text documents. For each email, we want to
extract a range of attributes: for example, name, GPA, and (current or most recent)
degree. For instance, consider the following extract from an email from one of the
hopeful applicants:

Hi!
My name is Martin, I would love to do a summer internship at Banana!

A bit about myself: I am currently working on a Bachelor of Computer Science
at Stanford University, my current GPA is 4.0.

Considering the three previously mentioned attributes, we can extract the name of
the applicant (“Martin”), his GPA (“4.0”), and his degree (“Bachelor of Computer
Science”). If analyzing emails from multiple applicants, we can represent the result
as a data table, as shown in table 4.2. In the next section, we discuss how we can
accomplish information extraction using language models.

62

4.3.1

CHAPTER 4 Analyzing text data

Table 4.2 Extracted information about applicants for summer internships

Name | GPA Degree

Martin 4.0 Bachelor of Computer Science

Alice 4.0 Master of Software Engineering

Bob 3.7 Bachelor of Design

Overview

Again, we’ll assume that our emails are stored on disk (in a tabular data file where
each row contains one email). We’ll iterate over emails and use the language model
to extract all relevant attributes. Instead of hard-coding relevant attributes, we will
allow users to specify those attributes on the command line (that way, you can easily
reuse the code if your criteria for summer internships should change). As we use
language models for text analysis (which are good at interpreting natural language),
there is no need to specify attributes in any kind of formal language. Simply specify
the attribute names (or, optionally, a short description in natural language), and the
language model should be able to figure out what to extract. The output of our code
will be a tabular data file (in .csv format) that contains content similar to table 4.2:
the output table has one column for each extracted attribute and one row for each
analyzed email.

So how can we extract attributes from a given email? Again, we want to generate a
prompt that describes the extraction task to the language model. For instance, the
following prompt should help us extract all relevant attributes from the previous
email:

@ Task description
Extract the following properties into a table:
name, GPA, Degree

@ Text to analyze

Text source: My name is Martin, I would love to do a summer
internship at Banana! A bit about myself: I am currently
working on a Bachelor of Computer Science at Stanford
University, my current GPA is 4.0.

© Output format

Mark the beginning of the table with <BeginTable> and the end with
<EndTable>. Separate rows by newline symbols and separate fields by pipe
symbols (|). Omit the table header and insert values in the attribute
order from above. Use the placeholder <NA> if the value for an attribute
is not available.

The prompt consists of three parts: a task description, including a specification of the
attributes to extract (@); the source text for extraction (@); and the desired output
format, including values to use if the source text does not contain any information
on specific attributes (€). Sending this prompt to the language model should yield
text that contains the desired extraction results.

4.3.2

4.3 Text extraction 63

The output from the language model is, first, a text string. Ultimately, we want
to output a structured data table. That means we still need some postprocessing to
extract values for all relevant attributes (name, GPA, and degree) from the output text.
Figure 4.2 illustrates the steps of the extraction process (for a single text document).

Email
Attributes —»[Generate prompt]
Prompt
[Language model]
Raw result
{ Postprocessing]

Structured output

Figure 4.2 For each email, we generate a prompt that contains the email and a description of the
extraction task. This description references the attributes to extract specified by the user. Given the
prompt as input, the language model generates an answer text containing extracted attribute values.
Via postprocessing, we extract those values from the raw answer text.

Generating prompts

We want to generate prompts that instantiate the following prompt template:

@ Task description
Extract the following properties into a table:
[List of attributes]

@ Text to analyze
Text source: [Email]

© Output format

Mark the beginning of the table with <BeginTable> and the end with <EndTables.
Separate rows by newline symbols and separate fields by pipe symbols (]).

Omit the table header and insert values in the attribute order from above.

Use the placeholder <NA> if the value for an attribute is not available.

The prompt template contains a task description (@), the source text for extraction

(@), and a specification of the output format (@) . Note that this prompt now contains

two placeholders (the template we used in the previous section contained only a

single placeholder): the list of attributes to extract and the source text for extraction.
We will generate prompts using the following code:

64

4.3.3

CHAPTER 4 Analyzing text data

def create prompt (text, attributes):
parts = []

@ Generates a task description

parts += ['Extract the following properties into a table:']
parts += [','.join(attributes)]
parts += [f'Text source: {text}'l @ Adds source text

© Adds a description of the output format

parts += [
('Mark the beginning of the table with <BeginTable> '
'and the end with <EndTables>.')]

parts += [
('Separate rows by newline symbols and separate '
'fields by pipe symbols (]|).')]

parts += [
('Omit the table header and insert values in '
'the attribute order from above.')]

parts += [
('Use the placeholder <NA> if the wvalue '
'for an attribute is not available.')]

return '\n'.join(parts)

This function takes as input the text to analyze (which we certainly want to include
in the prompt) along with a list of attributes we want to extract. After generating the
task description (@), including the list of attributes to extract, the function adds the
source text (@), as well as a specification of the desired output format (@). The
prompt concatenates these parts.

Postprocessing

Compared to the previous project (text classification), our prompt has changed to
adapt to the new task (text extraction). Even with a different prompt, we can still
reuse the same function as in the last section to obtain an answer from the language
model. On the other hand, we need to do a little more work than before to process
the raw answer using the language model. For classification, we directly used the reply
from the language model as the final result. In our current scenario (text extraction),
we generally will want to extract values for multiple attributes for a single input
text. As the output text from the language model contains values for all extracted
attributes, we need to extract values for specific attributes from the raw answer text.

For instance, we might receive the following raw answer text from the language
model:

| Martin | 4.0 | Bachelor of Computer Science |
To extract values for each attribute, we can split the raw text using pipe symbols

as field delimiters (while removing the first and last pipe symbols in the answer).
Ideally, we want to expand our scope beyond the specific use case we are currently

4.3 Text extraction 65

considering (extracting information on applicants from emails). In some scenarios,
we may extract multiple rows from the same text (imagine a scenario where multiple
applicants together submit a group email—but that’s admittedly a less likely case). To
support such use cases, we may also have to split the raw answer into text associated
with different rows. To do that, we can use the newline symbol as row delimiters (as
rows are split by newline symbols).

We can do all these things with the following function:

import re

def post_process(raw_answer) :
table text = re.findall(@ Extracts table data
'<BeginTable> (.*)<EndTable>"',
raw_answer, re.DOTALL) [0]

results = []
for raw _row in table text.split('\n'): @ Splits by row
if raw row: © Splits by field
row = raw_row.split('|")
row = [field.strip() for field in rowl]
row = [field for field in row if field]
results.append (row)
return results

The input to this function is raw text produced by the language model for a sin-
gle text document. The output is a list of rows (where each result row is, again,
represented as a list). To get from input to output, we first need to extract the part
of the raw answer that contains the actual table data (@). Answers generated by
GPT-40 may contain a preamble or additional explanations beyond the extracted
table (e.g., “Sure, here is the table you wanted: ...”). We need to separate the data
we are interested in. Fortunately, that’s easy as long as GPT-4o is following our in-
structions (which, typically, it does): the data we’re interested in should be contained
between two markers (<BeginTable> and <EndTable>). Hence, the regular expres-
sion ' <BeginTable>(.*) <EndTable>’ exactly matches the part of the output we’re
interested in. We retrieve it using Python’s re.findall function, which, given a
string and regular expression as input, returns a list of matching substrings. We use
the re.DOTALL flag to ensure that the dot within the regular expression matches all
characters and newlines (because the table may contain multiple lines). From the
resulting matches, we take the first one. Note that this implicitly assumes at least
one table in GPT’s output. Although that is typically the case, think about how to
make the function more robust toward answers from the language model that do
not comply with our instructions in the prompt.

Having extracted the table data in a text representation, we first split it into data
associated with specific rows (@) and data associated with specific cells (@). After
some cleanup (the Python function strip removes whitespace), we add the resulting
cell values to our result list. This list of rows (where each row is, again, represented
as a list) is returned.

66 CHAPTER 4 Analyzing text data

4.3.4 End-to-end extraction code

Listing 4.2 shows the completed Python code. The code structure is similar to li-
sting 4.1, and some of the functions are shared among the two listings (rather than
omitting repeated functions, this book aims to provide you with self-contained code
so you don’t have to piece together code from multiple pages). In particular, the
code uses the same libraries as before (@) and invokes the language model via the
same function (@). You will recognize the function for creating prompts (@) and
the one for postprocessing raw output from the language model (@), introduced
earlier.

Listing 4.2 Extracting user-defined attributes from text

import argparse @ Imports relevant libraries
import openai

import pandas as pd

import re

import time

client = openai.OpenAI ()

def create_prompt (text, attributes): (7] Generates prompts
" Generates prompt for information extraction.

Args:
text: extract information from this text.
attributes: list of attributes.

Returns:
input for LLM.
W
parts = []
parts += ['Extract the following properties into a table:']
parts += [','.join(attributes)]
parts += [f'Text source: {text}']
parts += [
('Mark the beginning of the table with <BeginTable> '
'and the end with <EndTable>.')]
parts += [
('Separate rows by newline symbols and separate '
'fields by pipe symbols (]|).')]
parts += [
('Omit the table header and insert values in '
'the attribute order from above.')]
parts += [
('Use the placeholder <NA> if the wvalue '
'for an attribute is not available.')]
return '\n'.join(parts)

def call llm(prompt) : © Invokes the language model

def

def

4.3 Text extraction 67

"r v o Query large language model and return answer.

Args:
prompt: input prompt for language model.

Returns:
Answer by language model.

nnon

for nr_retries in range (1, 4):

try:
response = client.chat.completions.create(
model="'gpt-40',
messages=[
{'role':'user', 'content':prompt}
]
)
return response.choices[0] .message.content
except:

time.sleep(nr retries * 2)
raise Exception('Cannot query OpenAI model!')

post_process (raw_answer) : O Postprocesses model output
nmon Extract fields from raw text answer.

Args:
raw_answer: raw text generated by LLM.

Returns:
list of result rows.

won

table_text = re.findall(
'<BeginTables> (.*)<EndTable>"',
raw_answer, re.DOTALL) [0]

results = []
for raw_row in table_ text.split('\n'):
if raw_row:
row = raw _row.split('|")
row = [field.strip() for field in row]
row = [field for field in row if field]
results.append (row)
return results

extract rows (text, attributes): © Extracts data tables from text
nnw Extract values for attributes from text.

Args:
text: extract information from this text.
attributes: list of attributes to extract.

Returns:
list of rows with attribute values.

nnon

68

4.3.5

CHAPTER 4 Analyzing text data

prompt = create_ prompt (text, attributes)
result text = call llm(prompt)

result _rows = post process (result_ text)
return result_rows

if name == ' main_ ': @ Extracts information and writes the result

parser = argparse.ArgumentParser ()

parser.add _argument ('file path', type=str, help='Path to input file')
parser.add _argument ('attributes', type=str, help='Attribute list')
args = parser.parse_args()

input df = pd.read csv(args.file path)

attributes = args.attributes.split('|")
extractions = []
for text in input df['text'].values: o Iterates over text

extractions += extract_ rows (text, attributes)

result_df = pd.DataFrame (extractions)
result df.columns = attributes
result_df.to_csv('result.csv')

The main function (@) reads two input parameters from the command line:

A path to a .csv file containing the text to analyze
A list of attributes to extract, separated by pipe symbols

After opening the input file (using the pandas library), we iterate over all input text
documents (@). Note that we expect the input text in the text column in the input
file. To perform the actual extraction, we use the extract_rows function (@). Given
input text and a list of attributes to extract, this function generates a suitable prompt,
obtains a raw answer from the language model, and postprocesses the raw answer to
get structured output (which it returns). After iterating over the input text (@), we
store the final result in a file named result.csv (this file will be overwritten if it already
exists).

Trying it out

You can find the code from listing 4.2 as listing2.py on the companion website.
You can also download the file biographies.csv there, giving you a small data set
to experiment on with your extractor (this is a bit different from our motivating
scenario, but publicly available data on email applications is sparse). This file contains
biographies of five famous people, as well as the associated names, with one person
per row. Change into the directory containing listing2.py (as well as the data), and
run

python listing2.py biographies.csv
"name|city of birth|date of birth"

The first parameter is the data set (if it is not in the same directory, adapt the path
accordingly). The second parameter is the list of attributes to extract. We use the

4.4

4.4 Clustering 69

pipe symbol again to separate attributes. Note that we only identify attributes via
their names; no need to refer to predefined categories. The language model can
understand attribute semantics based on the name alone.

After executing the code (which should not take more than a minute), you will
find the results stored in a file named result.csv. For example, executing the code on
the sample data could yield the following table:

name city of birth date of birth
0 Sergey Mikhailovich Brin Moscow August 21, 1973
1 Martin Luther King Jr. Atlanta, Georgia January 15, 1929
2 Anne E. Wojcicki <NA> July 28, 1973
3 Maria Salomea Sklodowska-Curie Warsaw 7 November 1867
4 Alan Mathison Turing Maida Vale, London 23 June 1912

Even if you execute the same code on the same data, you may see slight variations
(due to randomization when generating model output). Each row in that file (besides
the header row) represents an extraction. We are extracting name, birth city, and
birth date. Hence, we expect one extracted row per biography (and that is what
happens in our sample run). Note that there are missing values: for Ann E. Wojcicki,
the biography snippet does not contain the city of birth. The language model reacts
appropriately and inserts a corresponding placeholder (“<N/A>"), instead of a
concrete value.

Clustering

You’re a few weeks in at your new job at Banana. The job is great, but there is one
problem: your inbox keeps overflowing with emails! It’s not only applications from
hopeful summer interns (we took care of that in the last section). Those emails cover
a variety of different topics, and making sure to read all relevant emails takes a lot of
your time. Looking closer, you notice that many of the emails are redundant. For
example, you observe that many emails try to draw attention to the same company
events. For a moment, you ponder using your code for text classification (discussed in
section 4.2) to categorize emails into several categories (e.g., associated with specific
company events). After that, you can read only a few emails from each category to
have a full overview of what’s happening at Banana. Alas, there is one problem: it is
hard to come up with and maintain an exhaustive list of topics because those topics
will keep changing over the course of your employment. Instead, it would be nice to
automatically group different emails that are somewhat similar because, for instance,
they discuss the same event. That way, you wouldn’t have to come up with a list of
topics in advance.

What we want is to group similar emails into clusters. That’s yet another classical
text-processing problem: text clustering. If you want to bring related text documents
together without knowing the set of categories beforehand, clustering methods are
probably the way to go! In this section, we will see how to use language models for
text clustering.

70

4.4.1

4.4.2

CHAPTER 4 Analyzing text data

Overview

Clustering is a classical approach in computer science. Clustering methods predate
language models and advanced text analysis by quite a bit. However, traditionally,
clustering focuses on elements that are expressed as vectors. We want to bring
together (in the same cluster) vectors that have a small distance from each other
(and, of course, there are various distance metrics that we can apply for vectors).
However, that’s not really the case here: in our scenario, we want to assign similar
emails (or, in general, similar text documents) to the same cluster. So how do we get
from documents to vectors?

The answer is embeddings. An embedding represents a text document as a (typi-
cally high-dimensional) vector. That’s exactly what we’re looking for! Of course,
this approach only makes sense if we map text documents to vectors that have
something meaningful to say about the content of the documents. Ideally, we want
documents with similar vectors (i.e., vectors with a small distance according to our
preferred distance metric) to also have similar content. This means we cannot use
naive methods to map text documents to vectors. Instead, we need an approach that
considers the semantics of the text and takes them into account when generating a
vector representation.

Fortunately, language models can help! Providers like OpenAl offer language
models that take text as input and produce embedding vectors as output. So, having a
collection of text documents to cluster, we can calculate embedding vectors for all of
them and apply any classical clustering algorithm to the resulting vectors. Figure 4.3
illustrates this process. Next, we discuss how to implement it.

Email 1 Email N

[Create embedding

Create embedding

Embedding vector 1

T~

Embedding vector N

/

[

)

l

Clustered emails

Figure 4.3 Clustering emails. We first calculate embedding vectors for all emails. Then we cluster
those vectors to assign emails with similar content to the same cluster.

Calculating embeddings

For the examples discussed so far, we have used OpenAlI’s chat completions endpoint.
For clustering, we will use OpenAI’s embedding endpoint instead. The goal of embed-
ding is to create a vector that compresses the semantics of a text. Different models can

TL 445 6808

4.4 Clustering 71

be used to calculate embeddings. The dimension of the vector depends on the model
used. For the following code, we will use the text-embedding-ada-002 model. You
can try substituting other models for this one (you can find a list of OpenAl models for
calculating embeddings at https://platform.openai.com/docs/guides/embeddings)
to compare the output quality.

For instance, we can generate embeddings for text documents as follows:
import openai
client = openai.OpenAI ()
response = client.embeddings.create (

model="'text-embedding-ada-002",
input=text)

Here you see an extract from the corresponding response:

CreateEmbeddingResponse (

data=[
Embedding (embedding= [© Embedding vector
-0.005983137525618076, -0.000303583248751238, ...],
index=0, object='embedding')],
model="'text-embedding-ada-002", @ Model that generated embeddings

object='list"',
usage=Usage (prompt_tokens=517, total tokens=517)) © Usage statistics

The extract only shows values for the first few vector dimensions (@) (whereas the
full vector has over 1,000 dimensions). Besides the embedding vector, the response
contains the model name (@) and usage statistics (€). Unlike earlier, usage statistics
only refer to the number of tokens in the prompt (which is also the total number of
tokens processed). Unlike text completion, the language model only reads tokens
but does not generate them.

The most relevant part for us is, of course, the embedding vector itself. You can
access that embedding vector via the following command:

response.data[0] .embedding

Most of the time, invoking the language model once should provide you with the
embedding you are searching for. Of course, when calculating embedding vectors for
a large number of emails, we may run into problems (i.e., failed connection attempts)
every once in a while. This is why the final version of our embedding function again
contains a retry mechanism:

import openai
client = openai.OpenAI ()

def get_embedding(text) :
for nr retries in range(1l, 4):
try:
response = client.embeddings.create (
model="'text-embedding-ada-002",
input=text)
return response.data[0] .embedding

https://platform.openai.com/docs/guides/embeddings

72

4.4.3

4.4.4

CHAPTER 4 Analyzing text data

except:
time.sleep(nr retries * 2)
raise Exception('Cannot query OpenAI model!')

Given a text as input, we try up to three times to get a corresponding embedding
vector (increasing the delay between retries after each failed attempt). This is the
function we will use.

Clustering vectors

To cluster vectors (representing documents), we will use the k-means clustering
algorithm. K-means is a very popular clustering algorithm that works by iteratively
refining the mapping from vectors to clusters. Unlike other clustering algorithms, the
algorithm requires you to specify the number of clusters in advance. In our example
scenario, that means choosing how fine-grained the partitioning of emails by their
content should be.

How does the k-means algorithm work?

The k-means algorithm takes as input a set of elements to cluster and a target
number of clusters. It works by iteratively refining the mapping from elements
to clusters until a termination criterion (e.g., a maximum number of iterations or
minimal changes in cluster assignments between consecutive iterations) is met.
The k-means algorithm associates each cluster with a vector (representing the cen-
ter of that cluster). In each iteration, it assigns each vector to the cluster with
the nearest center. Then, it recalculates the vectors associated with clusters (by
averaging over the vectors of all elements currently assigned to the cluster).

We will be using the k-means implementation in the scikit-learn library. Follow
the instructions in the first section of this chapter to ensure that this library is
installed (import clustering methods via from sklearn.cluster import KMeans).
After importing the library, we can invoke the k-means implementation with the
following (concise) piece of code:
def get_kmeans (embeddings, k) :

kmeans = KMeans (n_clusters=k, init='k-means++"')

kmeans.fit (embeddings)
return kmeans.labels_

The function takes a list of embedding vectors and the number of target clusters as
input and then clusters those vectors using the k-means implementation. The result
of clustering is labels associated with each embedding vector. Those labels indicate
the ID of the associated cluster.

End-to-end code for text clustering

The following listing shows the complete code for clustering text documents via
embedding vectors. You will recognize the functions for calculating embedding
vectors (@) and clustering them (@).

4.4 Clustering 73

Listing 4.3 Clustering text documents using language models

import argparse
import openai
import pandas as pd
import time

from sklearn.cluster import KMeans
client = openai.OpenAI()

def get_ embedding(text) : O Calculates embedding vectors
"mn Calculate embedding vector for input text.

Args:
text: calculate embedding for this text.

Returns:
Vector representation of input text.
W
for nr_retries in range (1, 4):
try:
response = client.embeddings.create(
model="'text-embedding-ada-002",
input=text)
return response.datal[0] .embedding
except:
time.sleep(nr retries * 2)
raise Exception('Cannot query OpenAI model!')

def get kmeans (embeddings, k): @ Clusters embeddings
nmrn Cluster embedding vectors using K-means.

Args:
embeddings: embedding vectors.
k: number of result clusters.

Returns:
cluster IDs in embedding order.
W
kmeans = KMeans (n_clusters=k, init='k-means++')
kmeans. fit (embeddings)
return kmeans.labels_

if name == '_ main ': © Reads text and writes out clusters

parser = argparse.ArgumentParser ()

parser.add _argument ('file path', type=str, help='Path to input file')
parser.add argument ('nr_clusters', type=int, help='Number of clusters')
args = parser.parse_args()

df = pd.read csv(args.file_path)

embeddings = df ['text'] .apply(get embedding)
df ['clusterid'] = get_kmeans (list (embeddings), args.nr clusters)

df.to_csv('result.csv')

74

4.4.5

4.4.6

CHAPTER 4 Analyzing text data

The main function of listing 4.3 (@) reads data from a file on disk. Again, we assume
that data is contained in a .csv file and focus on the text column. First, we iterate
over text documents and generate corresponding embeddings (by invoking the
get_embedding function, discussed previously). Then, we cluster embedding vectors
via the get_kmeans function. The cluster IDs become an additional column in the
result table written to disk.

Trying it out
Time to try clustering via embedding vectors! You can find the code from listing 4.3 on
the book’s companion website (listing3.py), as well as a suitable data set (textmix.csv).
This data set contains a mix of text snippets from two sources: a collection of poems
and a repository of emails. We’ll try to separate the two via clustering: we expect
emails and poems to be assigned to different clusters.

Change into the directory containing the code and data, and run the following
command in the terminal:

python listing3.py textmix.csv 2

Here, textmix.csv is the name of the input file, and 2 is the number of target clusters
(in this specific case, two seems like a reasonable choice, whereas determining the
right number of clusters can be more difficult in other scenarios). The result will be
stored in the file result.csv. It contains all the columns from the input file, as well as
an additional column with the cluster ID (because we only use two clusters, this ID is
either 0 or 1). Running the command, you will likely see a result that places emails
in one cluster while putting poems in the other.

You may want to try different models to see differences in run time and result
quality. You can also try different input text and vary the number of clusters. Besides
that, you may want to implement some of the other use cases for embedding vectors,
which are mentioned at the beginning of this section. For instance, how about
implementing a retrieval interface that maps a natural language statement to the
most closely related document (by comparing the embedding vectors of questions
and documents)?

Other use cases for embedding vectors

So far, we have used vectors to identify similar documents via clustering. But this is not
the only use case for embedding vectors! To name just a few examples, embedding
vectors are often used to facilitate the retrieval of text documents related to a natural
language question. Here, we compare an embedding vector associated with the
question to embedding vectors associated with documents. Documents with similar
vectors are more likely to be useful in answering the question.

For instance, we hope that the embedding vectors for the question “What is a
Transformer model?” and the text “The Transformer is a neural network architecture,
often used for language models” are similar due to related topics. If so, we can identify
the document most relevant to the question by comparing embedding vectors. More

Summary 75

precisely, we calculate embedding vectors once for each document that may be useful
to answer questions. Then, whenever a new question is received, we calculate the
associated embedding vector and retrieve documents with similar embedding vectors.
We can then generate an answer based on those documents.

Another use case for embedding vectors is outlier detection. To identify text
documents from a set that are strikingly different from other documents in the
same set, we can compare their embedding vectors. Again, we only need to calculate
embedding vectors once for each document. In doing so, we avoid having to use
language models to compare documents. Instead, we simply compare embedding
vectors (which is very fast).

In summary, although we have focused on clustering, there are many use cases for
embedding vectors. This makes it worthwhile to learn how to generate and use them!

Summary

You can apply language models directly to analyze text data.

Prompts typically contain text to analyze, along with instructions. Instructions
describe the task to solve as well as the output format.

You can use chat completion for classification, extraction, and question answer-
ing.

Raw model output may need postprocessing to change the format.

Language models can transform a text into embedding vectors. You can create
embedding vectors via the embedding endpoint. Comparing embedding vectors
is relatively efficient.

You can use embeddings for clustering, retrieval, and outlier detection.

References

[1] Katz, D. M., Bommarito, M. J., Gao, S., et al. (2024). GPT-4 Passes the Bar
Exam. Philosophical Transactions of the Royal Society A: Mathematical, Physical and
Engineering Sciences 382(2270), 1-17.

Analyzing structured data

This chapter covers

= Translating questions to queries

= Building natural language interfaces
= Analyzing data tables

= Analyzing graph data

A significant percentage of the world’s information is stored as structured data.
Structured data essentially means data stored in a standardized format. For example,
data tables (e.g., think of the data you would find in an Excel spreadsheet) and data
describing entities and their relationships as graphs (such as a data set describing a
social network) are popular types of structured data.

Tools for processing structured data have been available for many decades. After
all, structured data has a standardized format optimized to make it easy for computers
to process. So why do we need large language models for that? The problem with
existing tools for processing structured data is their interface. Typically, each tool (or,
at the very least, each category of tools for specific types of structured data) supports
its own formal query language.

76

5.1

5.1 Chapter outline 77

Using this language, users can often perform a wide range of analysis operations
on structured data. But learning such query languages takes time! Wouldn’t it be
nice if all those systems could be queried using a single language, ideally in natural
language (e.g., plain English)?

This is where language models come into play. Large language models can translate
questions in natural language into a wide range of formal languages. So we can use
them as a universal interface to various data-analysis tools supporting a wide range of
structured data types. In this chapter, we will build natural language query interfaces
for different types of structured data. Such interfaces enable us (or others) to analyze
data by typing questions in natural language. The system then translates our questions
into formal queries, executes them, and presents us with results.

Chapter outline

In this chapter, we will be creating several natural language query interfaces. In
general, a natural language query interface answers questions about data formulated
in natural language. This chapter considers different types of structured data. First,
we will create natural language interfaces that answer questions about tabular data.
After that, we will create one that answers questions about graphs.

The principle is the same in both cases. We assume that data is processed using
a data type—specific tool for data processing. For instance, for tabular data, we will
use a relational database management system (RDBMS). To analyze graphs, we will
use a system for managing graph data. Then we will use the large language model
to translate questions in natural language into the query language supported by
the specific tool. For instance, for an RDBMS, this is typically the Structured Query
Language (SQL). Graph database management systems support a variety of graph
data—specific query languages. We will use the Cypher query language (a language
describing analysis operations on graph data). We will discuss both languages in
more detail in the following sections.

To translate questions into formal queries, the language model needs access to the
question (of course), some information about the target language (e.g., do we want to
write SQL or Cypher queries?), and some information about the structure of the data
we are trying to query. For instance, the structure of tabular data is characterized by
the names of tables, the headers of the columns that appear in those tables (hopefully
providing some hints on the semantics of data stored within them), and the data types
of each column (are we storing integer values or strings?), among other things. By
providing the language model with all of these pieces of information, including them
in the prompt, the model should be able to produce a formal query that captures
the semantics of our question.

We can process that query using a specialized tool to produce a query result.
Assuming the query translation was correct, this result will represent an answer to
the original question. Figure 5.1 illustrates the whole process.

78

5.2

CHAPTER 5 Analyzing structured data

Question

Data structure —»[Natural language query interface]

Query

Data —»{ Data-processing tool]

Query result

Figure 5.1 A natural language query interface translates questions in natural language into formal
queries, taking into account the data structure. Formal queries are then processed on data by a specia-
lized tool, generating a query result.

Why do we need external tools?

We have seen that language models can solve a variety of tasks. So why not simply
use language models to analyze structured data directly? Why do we rely on external
tools to do so and use the language model merely as a translator?

The primary reason is efficiency. Using large language models is expensive, and, at
least for large data sets, the size of the data can easily exceed the maximum input
size of the language model. Hence, relying on existing tools that can deal with large
structured data sets seems like a better idea.

WARNING In the following sections, we use language models to write com-
mands for data processing. Although language models work astonishingly well
in many cases, never rely on them to generate correct results in every single
scenario. In some cases, language models may write incorrect queries. Other
times, they may write commands to change or delete your data or alter your
system setup. Always keep a backup of important data before enabling data
access via language models.

A natural language query interface for analyzing game sales

We’re back at Banana, where you realize that your boss happens to be a computer
games enthusiast. Your boss not only likes to spend the evenings playing but also loves
analyzing data about computer games. Having recently obtained a data set about
computer game sales, your boss is seeking to extract interesting statistics. SQL is the
language of choice for analyzing tabular data, but your boss does not feel comfortable
writing SQL queries. Knowing about your expertise with regard to language models
and data analysis, your boss asks whether it would be possible to build an interface
that translates questions about computer games into corresponding SQL queries.

5.2.1

5.2 A natural language query interface for analyzing game sales 79

After thinking about it, you realize that this could be a fun project that can be realized
easily with language models. Let’s get started!

Setting up an SQLite database

Before we can analyze tabular data using SQL queries, we first must load that data
into an RDBMS, a tool for processing data tables efficiently. In this subsection, we’ll
see how to load data about computer games into SQLite, a popular RDBMS.

As a first step, make sure SQLite is installed. We will be using SQLite version 3 in
this section. You can check whether SQLite 3 is installed by typing the following in
your terminal:

sglite3 --version

If you receive a message like this one, no further installation is necessary:

3.33.0 2020-08-14 13:23:32 fca8...

If you see an error message, go to www.sqlite.org/download.html. Select the version
thatis consistent with your operating system, download all the relevantfiles, and follow
the instructions to install SQLite. In case of problems, click the SQLite Installation
item in the chapter 5 section of the book’s companion website. You will find detailed
instructions for how to install SQLite on different platforms. Afterward, run the
previous command to ensure that SQLite is installed properly.

Next, we want to create a relational database using SQLite. A relational database
is essentially a collection of data tables. You can think of each data table as a simple
spreadsheet. We have named table columns associated with a data type and (possibly
many) table rows that contain values for each of the columns. For instance, table 5.1
contains information about video games, and each row represents one game. The
table has four columns: Name, Platform, Year, and Genre. Three of the columns
(Name, Platform, and Genre) contain strings (i.e., text). The column Year contains
numbers (representing the year in which a game was released).

Table 5.1 Sample of data table. Each table row describes one video game.

Name Platform | Year Genre
Wii Sports Wii 2006 Sports
Super Mario Bros. NES 1985 Platform
Mario Kart Wii Wii 2008 Racing
Wii Sports Resort Wii 2009 Sports
Pokemon Red/Pokemon Blue GB 1996 | Role-Playing

Table 5.1 shows a small sample of a data set you can find on the book’s companion
website (look for the Games item in the chapter 5 section). We will use that data set
in the following sections to create a natural language query interface, enabling users
to analyze it with natural language commands. But first, we need to load that data
into the SQLite database system.

www.sqlite.org/download.html

80

CHAPTER 5 Analyzing structured data

TIP We’ll go over all the steps required to load tabular data into SQLite. This is
useful if you want to load data other than that discussed here. If you don’t want
to create your own database, you can skip this section and download games.db
from the book’s companion website instead.

Let’s start the SQLite command-line interface. Enter the following command in the
terminal, and press Enter:

sqglite3 games.db

This command creates a new database stored in the file games.db. At the same time,
it opens the SQLite command-line interface. Now we can instruct the SQLite tool to
load the data set we will use in the following sections. First we have to tell SQLite a
little about the structure of the data. We want to load an extended version of table 5.1
containing additional columns. Run the following command to describe the structure
of the data:

CREATE TABLE games (@ Table name

rank int, name text, platform text, @ List of table columns
year int, genre text, publisher text, americasales numeric,

eusales numeric, japansales numeric, othersales numeric,

globalsales numeric) ;

This command describes the structure of a single table named games (@) (because
it will store information about video games); in parentheses, we specify the full list of
columns in the table (separated by commas) (@). Each column is defined by the
column name (e.g., rank, name, or genre) followed by the column type. For example,
int means the column stores integer numbers, whereas text means the column
stores text data. All table rows must provide values for each column of the appropriate
data type.

After defining the table structure, we can load data into the table from the .csv
file under Games on the book’s website. Download the file if you haven’t already.
We will assume that the file is stored in the folder /Downloads/videogames.csv for
the following commands. Simply replace that path with the file path on your system.
Load the data using the following command (still in the SQLite interface):

.mode csv © Sets CSV mode
.import /Downloads/videogames.csv games @ Imports the data

The first command prepares SQLite to load data from a .csv file (which applies to
the file we want to load) (@). The next command (@) imports the data: the first
parameter is the path to the file we want to load data from, and the second parameter
is the name of the data table we want to load the file into. In this case, we reference
the table whose structure we defined before (games). To test whether the data was
loaded successfully (which should be the case if you don’t see an error message), run
the following command in SQLite:

SELECT count (*) FROM games;

5.2.2

5.2 A natural language query interface for analyzing game sales 81

You should see the result 16599 if all the data was loaded. If you see a lower number,
check for error messages in the SQLite output. You can quit the SQLite console via
the command .quit (don’t forget to prefix your command with a dot to make it
work). For the following sections, we will assume that the data has been loaded and
is stored in an SQLite file called games.db.

SQL basics

Sure, we can use the language model to translate questions to SQL queries (which
are understood by SQLite). But can we trust its translations? Thinking more about it,
you realize that it wouldn’t hurt to have at least some SQL basics to verify the output
of the language model before presenting the interface to your boss. That’s what we’ll
do in this section. A full introduction to SQL is, of course, beyond the scope of this
book. Have a look at the website www.databaselecture.com to get a more detailed
introduction by this book’s author. We’ll discuss a few SQL basics in this section that
help implement our natural language query interface.

SQL queries are used to analyze data tables. Query results may be derived from
a single table or by combining data from multiple tables. In our example database,
created in the last section, we have a single table. Using SQL queries, we can, for
instance, count rows with certain properties (e.g., all games by the same publisher),
filter data (e.g., only show games that were released in 2017), or perform various
aggregate operations (e.g., for each publisher, calculate the average earnings per
game).

An SQL query generally describes a table to generate (using data that is already
available in the database). Most example queries in this section have the following
structure:

SELECT [Columns or Aggregates] @ SELECT clause
FROM [List of tables] @ FROM clause
WHERE [List of conditions] © WHERE clause

The FroM clause (@) (the code following the FrRoM keyword and before the WHERE
keyword) describes the source data used for analysis. For instance, the FROM clause
can contain a list of table names separated by commas. In our example database, we
have only a single table to process (for advanced queries, the same table name may
appear multiple times in the FROM clause, creating different copies of the same table).
The queries we will encounter in the following sections will contain a single entry in
the FrROM clause: the games table.

The wHERE clause (@) defines predicates on the tables that appear in the FrROM
clause. For instance, it may contain a condition restricting the scope to games from a
certain publisher. The WHERE clause can contain simple conditions (i.e., conditions
that can be expressed by an equality or inequality on a table column) as well as
complex conditions (connecting multiple simple conditions by AND or OR operators).
Those conditions are used to filter rows from the tables in the FrRoM clause. Rows that
do not satisfy the condition in the WHERE clause are discarded and do not appear in
the query result.

www.databaselecture.com

82

CHAPTER 5 Analyzing structured data

Finally, we specify the columns of the desired result table in the SELECT clause (@).
More precisely, we specify a list of column definitions separated by commas. Columns
may be defined by a column name (a column that appears in one of the tables
in the FrRoM clause) or by a more complex expression: for example, an arithmetic
expression connecting multiple columns. Alternatively, we can specify aggregates
such as count (*) in the SELECT clause (the latter aggregate counts the number of
rows). The query result contains a table with the specified columns, filling them with
content corresponding to the column definition.

For instance, let’s say we want to count all games published in 2017. In this case,
our query result should contain a single column with a count aggregate. Also, our
WHERE clause should contain a filter condition restricting our scope to games from
2017. Our FrROM clause contains, of course, the name of the only table in our database
(games). The following query generates the desired result:

SELECT Count (*)
FROM games
WHERE year = 2017

To make things a little more complex, let’s assume that we want to calculate the
combined number of sales in Europe and Japan for all games released in 2017 by
a specific publisher (Activision). Our desired query result contains two columns:
the name of the game and the sales count. As our data table features two columns
with sales in Europe and sales in Japan (eusales and japansales, as per our table
definition in the previous section), we can describe the desired result column by
adding them (eusales + japansales). Because we want to restrict our scope to
games from 2017 and from Activision, we can use a complex predicate in the WHERE
clause: year = 2017 AND publisher = 'Activision'. Note the use of apostrophes
around the name Activision—we need to use apostrophes to delimit strings in query
conditions instead of numbers. The following query generates the desired result:

SELECT name, eusales + japansales
FROM games
WHERE year = 2017 AND publisher = 'Activision'

Optionally, when specifying aggregates, we can calculate those aggregates for different
groups of rows defined by shared values in certain columns. To do so, we add a final
GROUP BY clause to the previous query template, followed by a comma-separated list
of columns used to form groups. For instance, let’s assume that we want to calculate
game sales for each genre (such as strategy or action) separately. We can use the
following query to return one row with aggregates for each category of games (note
that we add the genre column in the SELECT clause as well to ensure that we can
associate numbers with the correct genre):

SELECT genre, name, eusales + japansales

FROM games

WHERE year = 2017 AND publisher = 'Activision'
GROUP BY genre

5.2.3

5.2.4

5.2 A natural language query interface for analyzing game sales 83

The SQL primer in this section is clearly insufficient to write your own SQL queries,
except for a few simple cases. However, we don’t really want to write our own SQL
queries—we want to rely on the language model instead! This introduction should
enable you to understand queries generated by the language model at a high level of
abstraction. And observing how the language model maps questions to queries may
be a good way to get started with learning SQL yourself. In the next section, we will
start by creating a simple translator, translating questions into SQL queries on the
games database.

Overview

Having acquired a few SQL basics to check the output of the language model, we will
now work on our text-to-SQL translator. We will use our translator via the command
line. We specify a question as input and ideally want an SQL query, translating
our question as output. If we run the output query in SQLite, we should get the
answer to our original question. Of course, this interface is manual and not very
convenient to use. Ideally, we would like it to execute queries automatically and show
the corresponding results directly in our query interface. We will create such an
interface in the following section. For now, we just focus on the core problem of
translating questions into queries. Also, for the moment, our only goal is to translate
questions about computer games. Therefore, we will hardcode the structure of the
target database. Again, we will generalize that in our next project.

Internally, to translate the input question, we will first create a prompt. This
prompt describes the translation task and contains all relevant details for translation
(e.g., the structure of our target database). Sending this prompt to the language
model should result, in most cases, in a correctly translated SQL query. We may still
need to do a little work to extract this query from potentially overly verbose output
generated by the language model. Let’s discuss these steps in more detail, starting
with the prompts.

Generating prompts for text-to-SQL translation

What information do we need to convey to the language model for a successful
translation? Clearly, we need to specify the question we want to translate. Also, we
need to specify the target system (SQLite) and describe the structure of the target
database. For the moment, we hardcode the database structure. We can simply
provide the language model with the table definition (create table...) that we
used in section 5.2.1. The language model will understand how this command maps
to a table structure. By sending a prompt with instructions for translation to the
model containing all of the previously mentioned types of information, the language
model should be able to produce a corresponding SQL query.
Let’s use the following prompt template:

Database: @ Database description
CREATE TABLE games (rank int, name text, platform text,
year int, genre text, publisher text, americasales numeric,

84

5.2.5

CHAPTER 5 Analyzing structured data

eusales numeric, japansales numeric, othersales numeric,
globalsales numeric) ;

Translate this question into SQL query: @ Task description
[Question] © Question to translate

This prompt template contains all the pieces of information described earlier. First,
it describes the target database (@) by providing the SQL commands used to create
the associated tables (in this case, a single table). Note that this is not a placeholder
because, for the moment, our query interface only needs to work for one database
(whose structure we hardcode in the template). Next, the prompt template contains
a task description (@): the goal is to translate questions into SQL queries. Finally,
the template contains the question to translate (€). Here, we use a placeholder
(indicated by square brackets). This enables us to use the same prompt template for
various questions our boss may ask about the data.
The following code generates prompts according to the previous template:

def create_ prompt (question) :

parts = []

@ Adds the database description

parts += ['Database:']

parts += ['create table games(rank int, name text, platform text, ']
parts += ['year int, genre text, publisher text, americasales numeric, ']
parts += ['eusales numeric, japansales numeric, othersales numeric, ']
parts += ['globalsales numeric) ;']

@ Adds the task description

parts += ['Translate this question into SQL query:']

parts += [question] © Adds the question to translate

return '\n'.join (parts) O Returns the concatenation

Given the question to translate as input, the code adds the description of the database
(@), then instructions for translation (@), and finally the question to translate (@).
The result is the concatenation of all the prompt parts (@).

Complete code

The next listing contains the full code for our natural language query interface. It
uses the prompt-generation function discussed earlier (@), as well as the function
invoking the language model (@) that we already know from prior chapters.

import argparse
import openai
import re
import time

client = openai.OpenAI ()

5.2 A natural language query interface for analyzing game sales 85

def create prompt (question) : © Generates a prompt for translation
"nm Generate prompt to translate question into SQL query.

Args:
question: question about data in natural language.

Returns:

prompt for question translation.
W
parts = []
parts += ['Database:']
parts += ['create table games(rank int, name text, platform text, ']
parts += ['year int, genre text, publisher text, americasales numeric, ']
parts += ['eusales numeric, japansales numeric, othersales numeric, ']
parts += ['globalsales numeric) ;']
parts += ['Translate this question into SQL query:']
parts += [question]
return '\n'.join (parts)

def call llm(prompt) : @ Invokes the language model
"mrno Query large language model and return answer.

Args:
prompt: input prompt for language model.

Returns:
Answer by language model.
W
for nr retries in range(1l, 4):
try:
response = client.chat.completions.create(
model='gpt-40',
messages=[
{'role':'user', 'content':prompt}
]
)
return response.choices[0] .message.content
except:
time.sleep(nr retries * 2)
raise Exception('Cannot query OpenAI model!')

if name == ' main_ ': © Reads a query and translates it to SQL

parser = argparse.ArgumentParser ()
parser.add argument ('question', type=str, help='A question about games')
args = parser.parse_args()

prompt = create_ prompt (args.question) (’ Generates a prompt
answer = call 1lm(prompt) 9 Generates an answer

@ Extracts an SQL query from the answer
query = re.findall('‘'‘‘sqgl(.*)‘'''', answer, re.DOTALL) [0]

print (£'SQL: {query}')

86

5.2.6

CHAPTER 5 Analyzing structured data

This listing reads a question about computer games from the command line (@).
Using the input question, it generates a prompt (@) thatinstructs the language model
to translate the question into an SQL query. It sends the prompt to the language
model and receives its answer (@).

The raw answer from GPT-4o typically contains explanations interleaved with the
SQL query we are ultimately interested in. To get the query alone, we have to extract
it from the raw answer (@). Here, we exploit the fact that GPT-40 encloses SQL
queries between the markers ** *sql and *** (when interacting with GPT models via
the ChatGPT web interface, the content between those markers is rendered as a code
box). The regular expression ** *sqgl (.*) *** matches the SQL query between the
markers, using the Python function re.findall to return a list of matches for this
regular expression (the re.DOTALL flag is required to ensure that the dot matches all
characters, including newlines, which may appear in SQL queries). We use the first
of those matches as our query (i.e., we implicitly assume that at least one match is
returned and that the first match is suitable).

Trying it out

Okay! Time to try our text-to-SQL translator! In the terminal, switch to the directory
containing the Python code. We will assume that the code is stored in a file called
listing1.py (which you can download from the companion website). Run the following
command:

python listingl.py "How many games are stored?"

As a result, you should obtain the following SQL query:

SELECT COUNT (*) FROM games;

Is that query correct? Let’s find out: in the terminal, switch to the repository contain-
ing the SQLite database file (games.db). Then, open the database via the SQLite
command-line interface:

sglite3 games.db

Now we can finally try the query generated by our text-to-SQL translator. Enter the
query, and press Enter. You should see the number of games stored in the database:
16,599.

You may want to try a few other questions. For example, see whether you can count
the number of games by specific publishers or games of a specific genre! Chances
are, for most questions referring to this simple database, GPT-4o should be capable
enough to provide an accurate translation. Your boss will be happy.

The interface we created in this section is still limited in various ways. First, you
have to reexecute the program for each new question. Second, you have to manually
copy and execute each translated query into the database system interface. Third,
and most importantly, if you ever want to switch to a different data set, you will have
to manually change your prompt template. In the next section, we’ll see how to
overcome these restrictions.

5.3

5.3.1

5.3 A general natural language query interface 87

A general natural language query interface

Your boss is happy with the new natural language interface and regularly shares
interesting insights about computer game sales with you. However, you can’t help but
wonder whether this use case alone exploits the full potential of your approach. For
instance, the human resources unit at Banana regularly deals with complex questions
on tables storing employee information. Couldn’t we generalize our natural language
interface to help them as well? In this section, we’ll generalize the natural language
query interface to work with arbitrary databases without requiring any changes to the
code itself. Furthermore, we will make the interface more convenient by executing
the translated queries directly and avoiding restarts between different questions on
the same data.

Executing queries

As a first step, let’s see how we can execute translated queries directly from Python.
This will avoid tediously copying queries from one interface to another. In Python,
we can execute queries on an SQLite database using the sglite3 library.

Let’s assume that the variable data_path stores the path to the database file. To
execute queries on that database, we must first create a connection:

import sglite3

with sglite3.connect (data_path) as connection:

We can now execute SQL queries on the database via the connection object. Let’s
assume that the SQL query we want to execute is stored in the variable query. After
connecting to the database, we first create a cursor object (enabling querying and
result retrieval) and then use it to execute the query:

import sglite3

with sglite3.connect (data_path) as connection:
cursor = connection.cursor ()
cursor.execute (query)

After execution, we can get a list of result rows by calling cursor.fetchall (). We’ll
put everything together in a function that takes two parameters—the path to the
database and a query to execute on it—as input, returning the query result in a string
representation:

def process_query(data _path, query):
with sglite3.connect (data path) as connection: © Connects to the database
cursor = connection.cursor() @ Creates the cursor
cursor.execute (query) © Executesa query
table rows = cursor.fetchall() (@ Retrieves the query result

© Transforms to a list of strings
table_strings = [str(r) for r in table rows]
return '\n'.join(table strings) O Concatenates result rows

88

5.3.2

CHAPTER 5 Analyzing structured data

After connecting to the target database (@), the function creates a cursor (@),
executes the input query (@), and retrieves the query result (@). After casting
the result tuples into a string representation (@), we concatenate the result rows,
separated by newline symbols (@).

Extracting the database structure

We want an interface that works for arbitrary SQLite databases without having to
change the code. This means we need to extract the structure of the current database
(information about its tables and columns) automatically.

For SQLite, we can extract the structure of a database by executing SQL queries.
These queries access a special table: the schema table. This table is created automatically
(i.e., we do not need to create it by hand). Among other things, this table contains
the SQL commands used to create other tables in a database. We can use them as
a concise description of the database structure, suitable as input to the language
model.

We can access the schema table via the table name sqlite_master. This table
contains a column named sql with information about queries used to create objects
inside the database. Specifically, we are interested in SQL commands used to create
tables. Those queries contain crucial information for query translation, including
the names and types of the columns that belong to the table created by the query.
The following query retrieves all SQL statements used to create tables in the current
database:

select sgl from sglite master where type = 'table';

So all we need to do is execute this query from Python. Fortunately, we already know
how to do that from the previous section. Given the path to a database, the following
function returns a text describing the queries used to create all the tables in the
database:

import sglite3

def get_ structure(data_path) :

with sglite3.connect (data_path) as connection: © Connects to the database
cursor = connection.cursor () 0 Creates a cursor
cursor.execute ("select sqgl from sglite master where type =
'table'; ") © Accesses schema table
table rows = cursor.fetchall() O Retrieves results
table ddls = [r[0] for r in table rows] © Retrieves SQL strings
return '\n'.join(table ddls) @ Concatenates SQL strings

Again, we create a connection (@) and a corresponding cursor object (@). Next,
we issue a query to the schema table to retrieve all SQL queries used to create tables
in the current database (@). We fetch the results (@) and extract the SQL strings
from the query result (@). Note that this part of the function differs slightly from
the generic function for executing queries, discussed in the previous section. By
extracting the values for the first (and, for this specific query, only) field of each row,

5.3 A general natural language query interface 89

we get rid of unnecessary delimiters between rows that would otherwise show up in
our output (and, later, in our prompts). The resultis the concatenation of all the
result rows (@).

5.3.3 Complete code

Listing 5.2 shows the complete code for our generic natural language query interface
(you can download it from the book’s companion website as listing 2 in the chapter
5 section). The code uses the function for extracting the database structure (@),
discussed earlier. The function for generating prompts (@) is a slight variant of the
one used for our previous database-specific query interface. Instead of a hardcoded
description of the database structure, it takes a description of the database as input
and inserts it into the prompt. The function for invoking the language model (@) has
not changed compared to the prior interface version. The function process_gquery
(@) was discussed in section 5.3.1.

Listing 5.2 Generic text-to-SQL query interface

import argparse
import openai
import re
import sglite3
import time

client = openai.OpenAI ()

def get_structure(data_path) : © Extracts the database structure
"mr Extract structure from SQLite database.

Args:
data_path: path to SQLite data file.

Returns:
text description of database structure.
W
with sglite3.connect (data_path) as connection:
cursor = connection.cursor ()

cursor.execute ("select sql from sglite master where type = 'table';")
table _rows = cursor.fetchall()
table_ddls = [r[0] for r in table_rows]

return '\n'.join(table ddls)

def create prompt (description, question): @ Creates a prompt for translation
""" Generate prompt to translate a question into an SQL query.

Args:
description: text description of database structure.
question: question about data in natural language.

Returns:
prompt for question translation.

CHAPTER 5 Analyzing structured data

"o

parts = []

parts += ['Database:']

parts += [description]

parts += ['Translate this question into SQL query:']
parts += [question]

return '\n'.join (parts)

def call 1lm(prompt) : © Invokes the language model
"r v Query large language model and return answer.

Args:
prompt: input prompt for language model.

Returns:
Answer by language model.
W
for nr_retries in range(1l, 4):
try:
response = client.chat.completions.create (
model="'gpt-40"',
messages= [
{'role':'user', 'content':prompt}
]
)
return response.choices[0] .message.content
except:
time.sleep(nr retries * 2)
raise Exception('Cannot query OpenAI model!')

def process query(data path, query): O Processes a query on a database
"n o Processes SQL query and returns result.

Args:
data_path: path to SQLite data file.
query: process this query on database.

Returns:
query result.

with sglite3.connect (data_path) as connection:
cursor = connection.cursor ()
cursor.execute (query)
table_rows = cursor.fetchall()
table strings = [str(r) for r in table rows]
return '\n'.join(table_ strings)

if name == ' main ':

parser = argparse.ArgumentParser ()
parser.add_argument ('dbpath', type=str, help='Path to SQLite data')
args = parser.parse_args()

5.3.4

5.3 A general natural language query interface 91

data_structure = get structure(args.dbpath) © Reads data structure
while True: @ Answers questions until the user quits
user input = input ('Enter question:')
if user input == 'quit':
break
prompt = create prompt (data_structure, user_ input)

answer = call llm(prompt)
query = re.findall('‘‘‘sqgl(.*)'‘‘', answer, re.DOTALL) [0]
print (£'SQL: {query}')

try: @ Processes the query on the database
result = process_query(args.dbpath, query)
print (f 'Result: {result}')

except:
print ('Error processing query! Try to reformulate.')

After reading the command-line arguments, the natural language query interface
extracts the structure of the database (@). Next, we loop (@) until the user terminates
the interface. In each iteration, we first read input from the keyboard (leaving the
loop if the user enters quit) and then create a prompt and invoke the language
model.

After translating the input question to a query, we execute that query directly
(@). Of course, the translation may be incorrect and result in a query that does not
execute on the target database. In that case, SQLite may throw an error, and we must
ensure that our program does not terminate. This is why we surround the call to the
query-processing function with a try-catch block.

Trying it out

Time to try our natural language query interface! Our interface now works for
arbitrary databases. But we don’t have another database, so we’ll use it again on the
games database. In the terminal, switch to the directory containing the games.db
file, and run the following command (let’s assume the code is stored in a file named

listing3.py):
python listing3.py games.db

The command will open an input box in which we can enter questions about the data.
Following is an example of interaction with the natural language query interface:

Enter question:How many games are stored in total?

SQL: SELECT COUNT (*) FROM games;

Answer: (16599,)

Enter question:How many games did Activision create?

SQL: SELECT COUNT (*) FROM games WHERE publisher = 'Activision'
Answer: (975,)

Enter question:Name one game that was released in 2017!

SQL: SELECT name

FROM games

92

CHAPTER 5 Analyzing structured data

WHERE year = 2017

LIMIT 1

Answer: ('Phantasy Star Online 2 Episode 4: Deluxe Package',)
Enter question:How many games were released for each genre?
SQL: SELECT genre, COUNT(*) as num games

FROM games

GROUP BY genre

Answer: ('Action', 3316)

('"Adventure', 1286)

('Fighting', 848)

('Genre', 1)

('Misc', 1739)

('Platform', 886)

('Puzzle', 582)

('Racing', 1249)

('Role-Playing', 1488)

('Shooter', 1310)

('Simulation', 867)

('Sports', 2346)

('Strategy', 681)

Enter question:Which three games sold more copies in Japan than in Europe?
SQL: SELECT name

FROM games

WHERE japansales > eusales

ORDER BY japansales DESC

LIMIT 3;

Answer: ('Name',)

('Pokemon Red/Pokemon Blue',)

('Pokemon Gold/Pokemon Silver',)

Enter question:Break down game sales in America by the platform!
SQL: SELECT platform, sum(americasales) AS total_sales

FROM games

GROUP BY platform

Answer: ('2600', 90.59999999999992)
'3DO', 0)
'3DS', 78.86999999999996)
'DC', 5.43)

(

(

(

('DS', 390.7099999999977)
('GB', 114.32000000000001)
('GBA', 187.54000000000033)
('GC', 133.46000000000004)
('GEN', 19.27)

('GG', 0)

('Ne4', 139.02000000000015)
('NES‘ 125.94000000000005)
('N 0)

('"PC', 93.2800000000005)
('"PCFX', 0)

('"PS', 336.509999999998)
('PS2', 583.8399999999925)

5.4

54.1

5.4 A natural language query interface for graph data 93

'"PS3', 392.2599999999998)
'PS4"', 96.79999999999998)
"PSP', 108.98999999999975)
'"PSV', 16.200000000000006)
'"Platform', 0.0)

'"SAT', 0.7200000000000001)

'SCD', 1)
'"TG1l6', 0)
'"WS', 0)

'Wii', 507.7099999999991)

'WiiU', 38.31999999999999)

'X360', 601.0499999999992)

'XB', 186.6900000000008)

'XOne', 83.19000000000003)
Enter question:quit

(
(
(
(
(
(
(
('SNES', 61.22999999999998)
(
(
(
(
(
(
(

As you see, we can ask a wide range of questions and obtain reasonable answers.
Besides the answer, the system also prints out the query. Knowing a little about SQL
enables us to verify whether the query accurately translates the question.

A natural language query interface for graph data

Word spreads at Banana about your text-to-SQL interface, and multiple colleagues
use it to analyze their tabular data sets. A new colleague of yours is working with large
graphs, modeling connections between colleagues in Banana’s internal social network.
This data is represented not as a table but as a graph, a data format particularly suitable
for modeling connections between entities (in this case, people). The colleague
reaches out to ask whether it would be possible to expand your interface to query
such data too. Knowing that language models should, in principle, be able to handle
a variety of formal query languages, you are optimistic and agree to look into it.

What is graph data?

Like relational data, graphs are a particularly popular type of structured data. A
graph generally consists of a collection of nodes connected by edges. Nodes can be
associated with properties, and edges are labeled. For instance, social networks are
often represented as graphs. Here, nodes represent people, and edges represent
friendships and relationships. Graphs are also a natural representation of road or
subway networks. In this case, nodes represent cities or subway stations, whereas
edges represent roads or rails connecting them.

Figure 5.2 shows an example graph representing a subway network. It represents
stations of the New York City subway as nodes (hence, nodes are labeled station).
Edges represent direct connections and are labeled with the associated subway line.
Nodes are associated with a name property, assigning nodes to the name of the
corresponding station.

94

5.4.2

CHAPTER 5 Analyzing structured data

Times Square

Figure 5.2 An example graph representing a small part of the sub-
way network in New York City. Nodes, drawn as circles, represent
subway stations and are associated with a property, assigning
them to the name of the represented subway station. Edges, drawn
name: as arrows, represent direct connections via specific subway lines.
Grand Central Edges are labeled by the subway line connecting the stations.

Bryant Park

The fact that graphs can be used to model various types of data has motivated a
variety of specialized systems called graph database systems for graph data processing.
These systems support graph-specific query languages (not SQL), enabling users to
formulate complex questions about the underlying data. Graph database systems are
optimized for processing large graphs efficiently.

Next, we will use language models to translate questions in natural language into
queries formulated in the graph database management system. We will see that this
scenario requires only small modifications compared to our approach for translating
questions into SQL queries.

Setting up a Neo4j database

We will use the Neo4j system, a database system specialized for graph data. You don’t
even have to install anything on your local machine. Neo4j comes with an online
demo that we will use next.

First, go to https://neo4j.com/sandbox/ in your web browser. Click the Launch
the Free Sandbox button. This should open a login form, in which you can decide to
create a new account or use existing accounts (e.g., a Google account). Figure 5.3
shows the screen you should see next.

Here, we can select one of several example databases to try Neo4j. We will be
using the Movies database. This database contains information about movies and
the actors who played in them (representing movies and actors as nodes). Click the
Movies database and then the Create button to create an instance of the database
and prepare it for querying. Creating the database may take a few minutes. Afterward,
you can open the Movies database and access the query interface.

Figure 5.4 shows the Neo4j query interface. Click the database icon in the upper-
left corner to see an overview of the database. The database contains multiple types of
labels (i.e., node types), including People and Movies. It also contains relationship
types such as ACTED_IN and DIRECTED, labeling the edges in our graph. For instance,
these two relationship types allow us to keep track of who played in which movie
(acTED_IN) and who directed which movie (DIRECTED). Properties are associated
with nodes and assign keys to values. The database overview reports on property keys
such as name (assigning an actor to a name) and title (assigning movies to titles).

https://neo4j.com/sandbox/

5.4.3

5.4 A natural language query interface for graph data 95

Select the Movies database.

2]

Select a project | x|
I For Developers (14) T For Dala Seiertists (7]
Featured Dataset

[irrer) B Eor Develor 9 for Develoners o ol PRy L

r‘@ m or Deveiopers. (g O]’G or Deveiopens e m For Data Sclentl

Movies OpenStreetMap Graph Data Science

A guide to comman graph quary patterns invalving A graph zolution to the sh: path problem with Leverage Neodj Graph Dota Scienoe library ta

ennnactions batwan mavies, actars, and directnes, Cypher A poin = and raisting af Ao h algedthms lytics and foatura

in Mesws York City. erRgineering.
Libraries Enabled: GraphOL Libraries Enabled: Graph Data Scance

% For Davelopars Mow

ICl} Offshoreleaks

The Cffshore Leaks dataset and guide frem the
nternational Consertium of investigative Jounalists
=T

Froject - Mewies

1SN

Click here to create the database.

Figure 5.3 Select the movies database, and click Create to create a corresponding instance.

You can enter queries in the text box at the top of the screen and submit them by
clicking the button to the right of the text box.

The Cypher query language
Neo4j supports the Cypher query language. Although a full introduction to Cypher
is beyond the scope of this book (instead, have a look at the Neo4j documentation,
available at https://neo4j.com/docs/cypher-manual/current/introduction/), we
will quickly go over the basics. The purpose of this introduction is to enable you to
understand, at least in simple cases, the semantics of the queries generated by the
language model.

A simple type of Cypher query uses a MATCH statement describing a subgraph to
find. For instance, we may simply want to find all nodes of a certain type. The query
for finding the names of all the people in our Movies database is the following:

MATCH (p:Person) @ Pattern to match
RETURN p.name @ Result to return

The MATCH statement describes a pattern to match (@). In this case, that pattern
consists of single nodes of type Person. The MATCH statement assigns nodes or edges
that appear within the pattern to variables. In this case, we introduce the variable p
and assign it to nodes matching the pattern. The RETURN statement (@) describes

https://neo4j.com/docs/cypher-manual/current/introduction/

96

CHAPTER 5 Analyzing structured data

Click here to see
database information. Enter queries here. Submit query here.

Database Information

i o el s Pinvm yout g o ang lo,

= . SOH
1]
eodj . o ;
:neod) Getting started Try Neodj with live Cypher basics
with Neodj Browser data Intra 3 Graphs with Lypher
o] Browemer user inberfacs ple graph that wihatis 3 gragn
puidle mon query
Atlers & mavies in cos:
referercen pap culture
Eomyright @ ecdy, |re 2062-2003
= *
L o
Connection You are connacted s USer datascisncenl |
T {aring S W b

Figure 5.4 Click the database icon (upper-left corner) to access information about the current graph
database, including the types of nodes and edges.

the query result based on matched patterns. Here, we instruct the system to return
the name property for each node matching the pattern.

Patterns can extend beyond a single node. For instance, we may want to find the
titles of all movies starring the actor Tom Cruise. In this case, the pattern we are
looking for consists not of a single node but rather of two connected nodes. We are
searching for a node of type Movie connected via an edge of type ACTED_IN to a node
of type Person whose name property is set to “T'om Cruise.” This can be accomplished
by the following Cypher query:

© Matches movies starring Tom Cruise

MATCH (p:Person name: 'Tom Cruise')-[:ACTED_IN]->(m:Movie)
RETURN m.title @ Returns the movie title

The expression (p:Person name: 'Tom Cruise') (@) matches all nodes of type
Person whose name property is set to “Tom Cruise.” The expression (m:Movie)
matches all nodes of type Movie. Finally, we connect those two with the expres-
sion - [:ACTED_IN] ->. This expression represents a directed connection (hence the
arrow shape) between the first node (representing Tom Cruise) and the second node
(representing an arbitrary movie). The type of the connection is restricted to ACTED_IN
(excluding, for instance, movies directed by Tom Cruise in which he did not act).
Finally, note that the MATCH expression assigns parts of this pattern to variables again.

5.4.4

5.4.5

5.4 A natural language query interface for graph data 97

Tom Cruise will be represented by variable p, and the movies he played in will be
represented by variable m. The RETURN expression (@) retrieves the title property
of the movie node.

Finally, let’s see how Neo4j can calculate aggregates (similar to SQL):

@ Matches movies starring Tom Cruise

MATCH (p:Person name: 'Tom Cruise')-[:ACTED_ IN]->(m:Movie)
RETURN count (*) @ Returns the number of movies

This query is similar to the one before and simply counts the number of movies
featuring Tom Cruise as an actor (@). The RETURN statement (@) contains a corre-
sponding aggregate. If you enter the query, you should obtain “3” as the query result
(so, clearly, the example database is incomplete).

Translating questions to Cypher queries

We will use a similar approach to the one we used for translating questions to SQL
queries. Primarily, we need to change the prompt to our language model. Instead of
instructing the language model to translate to SQL, we will instruct it to translate to
Cypher. Fortunately, language models like GPT-40 have been pretrained with a large
and diverse set of training data. As we will see in the remainder of this section, this
pretraining data must have included Cypher queries as well, and that’s why we can
use language models for translation. As always, there are no absolute guarantees, and
Cypher queries generated by the language model may not accurately translate our
questions. However, at least for simple queries, the translation is typically correct.

Generating prompts

To translate questions into Cypher queries, we need to include several pieces of
information in the prompt. First, this includes the question we want to translate.
Second, this must include a description of the database structure. In the case of
SQL, the database structure is defined, for instance, by table and column names. In
the case of a Neo4j database, we want to include information about node and edge
types, as well as the names of the most relevant properties. This is essentially the
information shown on the left side of figure 5.4.

To keep things simple, we’ll focus on the example database introduced previously,
containing information about movies. This means we hardcode the database structure.
Of course, similar to our text-to-SQL interface, it is possible to extend the interface
to handle arbitrary graph databases.

We will use the following prompt template:

Neo4j Database: @ Database description

Node labels: Movie, Person

Relationship types: ACTED_IN, DIRECTED,

FOLLOWS, PRODUCED, REVIEWED, WROTE

Property keys: born, name, rating, released

roles, summary, tagline, title

[Question] @ Question to translate

Cypher Query: © Specification of the target language

98

5.4.6

CHAPTER 5 Analyzing structured data

This prompt template contains a description of the database (@). This description
includes a specification of the database type (a Neo4j database), as well as a list of
node labels, relationship types, and properties. Note that we hardcode the database
structure in this prompt template. If using the interface on a different database,
this part of the prompt must be replaced. Next, the prompt template specifies the
question to translate (@). This is a placeholder, as we want to enable users to ask
various questions about the data. The prompt ends with a specification of the target
language for query translation (@). This implicitly instructs the language model to
translate the question to a Cypher query.

The following piece of code instantiates this prompt template for an input qu-
estion:

def create prompt (question) :
parts = []
parts += ['Neo4j Database:']
parts += ['Node labels: Movie, Person']
parts += ['Relationship types: ACTED_IN, DIRECTED, ']
parts += ['FOLLOWS, PRODUCED, REVIEWED, WROTE']
parts += ['Property keys: born, name, rating, released']
parts += ['roles, summary, tagline, title']
parts += [question]
parts += ['Cypher Query:']
return '\n'.join (parts)

Complete code

The following listing uses the function for generating prompts (@), discussed pre-
viously, and reuses the function for calling GPT-4o (@) (with repeated retries, if
necessary).

Listing 5.3 Translating text questions into Cypher queries for Neo4j

import argparse
import openai
import re
import time

client = openai.OpenAI ()

def create_prompt (question) : © Generates prompts for translation
" Generate prompt to translate a question into Cypher query.

Args:
question: question about data in natural language.

Returns:
prompt for question translation.
W
parts = []
parts += ['Neo4j Database:']

5.4 A natural language query interface for graph data 99

parts += ['Node labels: Movie, Person']

parts += ['Relationship types: ACTED_ IN, DIRECTED, ']
parts += ['FOLLOWS, PRODUCED, REVIEWED, WROTE']

parts += ['Property keys: born, name, rating, released']
parts += ['roles, summary, tagline, title']

parts += [question]

parts += ['Cypher Query:']

return '\n'.join (parts)

def call 1llm(prompt) : @ Calls the LLM
"mrno Query large language model and return answer.

Args:
prompt: input prompt for language model.

Returns:
Answer by language model.
W
for nr retries in range(1l, 4):
try:
response = client.chat.completions.create(
model='gpt-40"',
messages=[
{'role':'user', 'content':prompt}
]
)
return response.choices[0] .message.content
except:
time.sleep(nr retries * 2)
raise Exception('Cannot query OpenAI model!')

if name == ' main ':

parser = argparse.ArgumentParser ()
parser.add argument ('question', type=str, help='A question about movies')
args = parser.parse_args()

prompt = create_ prompt (args.question) 9 Creates a prompt
answer = call 1lm(prompt) o Generates an answer

© Extracts Cypher queries
query = re.findall(''‘‘cypher(.*)'''', answer, re.DOTALL) [0]

print (f'Cyper Query: {query}')

Given a question about the database as input, the code generates a corresponding

prompt (@), obtains an answer from the language model (@), and finally extracts

the Cypher query from that answer (@). The regular expression used for extraction

differs slightly because GPT includes Cypher queries using the pattern ***cypher
*+1. We finally print out the extracted query.

100 CHAPTER 5 Analyzing structured data

5.4.7 Trying it out
You can find listing 5.3 on the book’s companion website. Download it, and use it
from the command line like so:

python listing3.py "How many movies are stored?"

You should obtain a query such as the following as output:

MATCH (m:Movie)
RETURN COUNT (m) AS numberOfMovies

You can now enter this query into the Neo4j interface to get the corresponding result
(which is 38). Try a few more queries to get a better sense of the capabilities of the
language model. As you see, with just a few changes to the prompt template, we
transformed our text-to-SQL interface into a text-to-Cypher interface that works well
in most cases.

Summary
Structured data follows a standard format, making it easier to parse. Examples
of structured data include tabular data and graphs.
Structured data is often processed via specialized tools.
Relational database management systems process tabular data and typically
support SQL queries.
Graph data management systems process data representing graphs.
Language models translate natural language to many formal query languages.
Besides a question, prompts for query translation specify the database structure.
Copy your database before executing queries generated by language models.
Do not blindly trust your language model to generate accurate queries.

Analyzing images
and videos

This chapter covers

Analyzing images
Comparing images
Analyzing videos

In the previous chapters, we have seen how to analyze text and structured data. Does
that cover everything? Not even close! By far, the largest portion of data out there
comes in the form of images and videos. For instance, videos alone account for an
impressive two-thirds of the total data volume exchanged over the internet! In this
chapter, we will see how language models can also help us extract useful insights
from such data types.

The following sections introduce a couple of small projects that process images
and video data. GPT-4o is a natively multimodal model; we can use it for all these
tasks. First, we will see how to use GPT-4o to answer free-form questions (in natural
language) about images. Second, we will use GPT-4o to build an automated picture-
tagging application, automatically tagging our holiday pictures with the people who
appear in them.

101

102

6.1

6.2

CHAPTER 6 Analyzing images and videos

Finally, we will use GPT-4o0 to automatically generate titles for video files. The goal
of these mini-projects is to illustrate features for visual data processing offered by the
latest generation of large language models. After working through those projects, you
should be able to build your own applications for image and video data processing
in various scenarios.

Setup

You will need to install one more Python package to run the example code. Speci-
fically, you need OpenCV, a library for image processing. In the terminal, run the
following command to install OpenCV:

pip install opencv-python==4.8.1.78

We will use this library to, for example, read images from disk and split videos into
frames.

Next, you need to install one more library, enabling you to send requests directly to
OpenAl’s web services (which you will use to send pictures stored locally to OpenAl):

pip install requests==2.31.0

Well done! If you didn’t encounter any error messages running these commands,
your system is now configured for image and video data analysis using GPT-4o. Let’s
start with our first project in the next section.

Answering questions about images

Neural networks for detecting objects (such as cars) in images have been around for
many years. So what’s the big deal about processing images with GPT-40?

The primary limitation of classical models for image processing is that they need
to be trained for specific analysis tasks. For example, let’s say you have a neural
network that is really good at detecting pictures of cats. You can use that to filter out
cat pictures from your personal collection. However, maybe you’re not into cats in
general but are specifically interested in golden Persian cats. Unless your model is
trained to detect that specific type of cat, you’re out of luck and need to label enough
example pictures yourself. Doing that is tedious, and you may end up not using the
model and instead going through the pictures by hand. The big deal about image
processing with GPT-40 (and similar models) is that it solves a wide range of tasks
with images based on just a description of the task (in natural language).

We will use that to build a generic question-answering system for images. As a user,
you will formulate arbitrary questions in natural language and point to a picture,
and the system will generate a text answer. For example, asking the system to detect
“golden Persian cats” in a picture should work out of the box without needing
task-specific training data.

6.2 Answering questions about images 103

6.2.1 Specifying multimodal input
In this section, we will create a system that takes two inputs:

A URL leading to an image on the web
A natural language question about the image

The output is an answer to the question (as text). Internally, the system uses GPT-40
to process the question on the input image. It generates multimodal prompts, com-
bining multiple types of data (here, text and images). Figure 6.1 shows an example
prompt: it contains one image (of an apple) and a question about the image (whether
the image shows a banana). The correct answer is “No” in this case.

Is this a banana ("Yes","No")?

Figure 6.1 Multimodal prompt con-
taining an image and text. The prompt
instructs the language model to decide
whether the picture shows a banana. In
this case, the expected output is “No”
(otherwise “Yes”).

How can we create such prompts for GPT-40? We can reuse the chat completions
endpoint for that. As a reminder, this endpoint takes as input a list of prior messages
exchanged between the user and (potentially) the system. For our visual question-
answering system, we only need a single message (that originates from the user).

Unlike the prior code, messages can now contain multimodal content. In this
specific case, this content consists of one text snippet (the question asked by the
user) and one image (specified as a URL for the moment). This is the message we
will use in the following code (question is a variable containing the question text,
and image_url is the URL to the image):

{'role':'user', 'content':[
{'type':'text', 'text':question}, @ OQuestion text
{'type':'image url', 'image url':({
'url':image url}} @ Image URL

}

First, note the role attribute identifying the message as generated by the user.
Second, the message content is specified as a list of Python dictionaries. Each of

104

6.2.2

CHAPTER 6 Analyzing images and videos

those dictionaries describes one element of the message. As we are now considering
multimodal data—that is, images and text—we need to clarify the type (or modality)
of each input element. This is accomplished by setting the type attribute to either
text or image_url. The actual content is specified using either the text attribute
(@) or (in the case of an image) the image_url attribute (@). GPT-4o is flexible
enough to understand that the question refers to the image and to process both
appropriately.

TIP Whereas the input contains a single picture, the content of a message may
contain multiple elements of the same type: for example, multiple images. We
will exploit that capability for the project in the next section.

Code discussion

The following listing shows the complete code for our visual question-answering
system. Taking the image URL and a question as input (@), the actual magic (i.e.,
visual question-answering) happens in the analyze_image function (@).

Listing 6.1 Answering questions about images via language models

import argparse
import openai
import time

client = openai.OpenAI()

def analyze image(image url, question): © Answers question about an image
nn o Use language model to answer questions about image.

Args:
image_url: URL leading to image.
question: question about image.

Returns:
Answer generated by the language model.
W
for nr_retries in range(1l, 4):
try:
response = client.chat.completions.create(
model="'gpt-4o0',

messages=[@ Multimodal content
{'role':'user', 'content': [
{'type':'text', 'text':question},
{'type':'image url', 'image url':{

'url':image url
1
}
}1
)

return response.choices[0] .message.content

6.2.3

6.2 Answering questions about images 105

except:
time.sleep(nr retries * 2)
raise Exception('Cannot query OpenAI model!')

if _ name_ == '__main_ ':
parser = argparse.ArgumentParser () G’ Input parameters
parser.add_argument ('imageurl',6 type=str, help='URL to image')

parser.add_argument ('question', type=str, help='Question about image')
args = parser.parse_args()

answer = analyze_ image (args.imageurl, args.question)
print (answer)

As you see, all it takes is a few lines of Python code to answer questions about images!
The function analyze_image (@) contains but a single call to GPT-40, using the
message described in the previous subsection (@). The fact that we now provide
multimodal input does not change the format of the answer. Again, we get an object
containing a message generated by the language model. Although the input may now
be multimodal, the output is text. As we instructed the language model to generate
an answer to the input question (@) (i.e., exactly what the user is looking for), the
output is directly printed out for the user.

Trying it out
Time to test our visual question-answering system! You’re back at Banana (a producer
of various consumer electronics, including laptops and smartphones, introduced in
chapter 2) and looking for a new company logo. You want to base your logo on a
picture of a banana. Searching the web, you find large repositories with images of
fruit. But which of them are bananas? Instead of going through images by hand, you
would much rather delegate that task to a language model. Luckily, you can directly
use the code from the previous section by specifying the URL of each fruit picture,
together with the question “Is this a banana (“Yes”,“No”)?” This means you’re using
the visual question-answering system essentially as a classification method (which is
only one of many possible use cases). You can then write a simple script, iterating
over all relevant URLSs and retaining the ones where the answer is “Yes.”

On the book’s companion website, you will find the code from listing 6.1 as well
as pictures of fruit (look for the links labeled Fruit 1 to Fruit 5). Download the code,
change to the containing repository in the terminal, and run the following code:

python [URL] 'Is this a banana ("Yes", "No")?'

In this command, replace [URL] with the URL of the image (you can obtain a suitable
URL by, for example, copying the Fruit 1 link on the book’s website).

Object classification is relatively easy, particularly for objects as common as bananas.
So you should see accurate results for most examples. Try a few different fruits and
possibly other images of your choice. The range of questions you can ask is virtually
unlimited (putting aside the rather generous input length limit of 128,000 tokens,
about 300 pages of text).

106

6.3

CHAPTER 6 Analyzing images and videos

A word of caution may be in order when it comes to processing costs. Processing
images via GPT-40 can be expensive! The precise cost depends on the image size
and the degree of detail used for image processing. You can control the degree of
precision using the detail parameter. For instance, choose a low degree of precision
using the following specification of image URLs (in the model input):

{rtype':'image url', 'image url':{'url':image url, 'detail':'low'}}

Set the detail attribute to low to pay a cost equivalent to 85 tokens per image (i.e.,
the cost equivalent of processing a text with 85 tokens using GPT-40). If you set
the degree of detail to high (the default), the cost consists of a fixed amount of
85 tokens and a variable amount that depends on the image size. To calculate the
variable cost component, we first scale the image to a size (in pixels) of 2,048 X
2,048 (while maintaining the aspect ratio). This scaling step only applies to pictures
with a size beyond 2,048 x 2,048 pixels. The second scaling step is performed in any
case. It scales the shorter side of the image to a size of 768 pixels. Now consider the
minimum number of 512 x 512 pixel squares needed to cover the image after the
second scaling step. The variable cost component is proportional to the number of
squares multiplied by a factor of 170 tokens (the cost per square, set by OpenAl).

For instance, let’s say we want to process an image of size 1,024 x 1,024 pixels with
high precision. In that case, we can skip the first scaling step, as the image still fits
within a 2,048 x 2,048 pixel square. The second scaling step, however, is performed
in any case. It scales the image to a size of 768 X 768 pixels. To cover a square with a
length of 768 pixels on both sides, we require four squares of size 512 x 512 pixels.
That means that to process our image, we pay the following:

85 tokens (the fixed cost component)
4 x 170 tokens = 680 tokens (the variable cost component)

In total, we therefore pay 85 + 4 X 170 = 765 tokens. Given current prices, this corre-
sponds to $0.003825 (i.e., less than one cent). Although that may seem acceptable,
always keep costs in mind when processing large repositories of images via language
models.

TIP To find the price for processing images with a specific resolution, you can
also use the OpenAl price calculator: https://openai.com/pricing.

Tagging people in images

Imagine the following situation: you just came back from a (well-deserved) holiday
with friends, and, of course, you have taken a large number of pictures. You want to
send your friends the pictures in which they appear. But how to do that efficiently?
You could go through the pictures by hand and tag each friend individually. But
having just come back from vacation, your email inbox is overflowing, and you don’t
have time to go through holiday pictures. What can you do?

https://openai.com/pricing

6.3.1

6.3.2

6.3 Tagging people in images 107

Overview

In this section, we will create a small application that automatically tags people in
images. Users provide three inputs:

The path of a directory containing the pictures to tag
The path of a directory containing pictures of the people to look for
The path to an output directory into which tagged pictures are written

To keep things simple, we will use filenames to represent tags. We assume that pictures
showing people to look for are named after the person they show. For example, let’s
say we have images named Joe.png and Jane.png in our directory containing the
people to look for. Given a picture to tag, we will simply change the filename by
prefixing it with the names of people that appear in it.

For instance, assume we have an image called beach.png in which both Joe and
Jane appear. Then, in the output directory, we will create two files called Joebeach.png
and Janebeach.png, showing that both appear in the beach picture. If we want to
send out all pictures showing the same person, such as Joe, we can search for all files
whose name satisfies the regular expression Joe*.png (with * representing arbitrary
strings).

Internally, as a first step, we need to load pictures representing people to look for,
as well as the pictures to tag. We will consider each pair of a person to look for and a
picture to tag. For example, if we are looking for five people and have 10 pictures to
tag, that makes 50 pairs to consider. For each of these pairs, we use GPT-4o to decide
whether the corresponding person appears in the picture to tag.

To make that happen, we will need multimodal prompts containing text and
two pictures. The first picture shows the person to look for, and the second picture
shows the picture to tag. Via text, we can instruct the language model to compare the
pictures to decide whether the same person appears. Whenever we find a match—
that is, a combination of a person and a picture in which that person appears—we
will copy the corresponding picture to the output folder, prefixing its name with the
name of the person.

Figure 6.2 shows an example prompt. On the left, we have a picture of Jane, one
of the people we are looking for. On the right side, we have a picture to tag. The
text instructions ask the language model to compare the two pictures, producing the
answer “Yes” if they show the same person (and “No” otherwise). In this case, the
pictures do not show the same person, and the correct answer should be “No.”

Encoding locally stored images

In the previous section, we used GPT-4o to analyze images on the web. Now we are
talking about our private holiday pictures. We may not want to make all of them
publicly accessible on the web. So how can we share them with GPT-4o alone?

We may have to convert images into a format suitable for GPT-40. GPT-40 supports
awide range of image formats, including PNG, JPEG, WEBP, and GIF. For any format,
the image file size is currently limited to 20 MB. To upload pictures of the supported
types to GPT-4o, we first need to encode them using a base64 encoding.

108

CHAPTER 6 Analyzing images and videos

Do the images show the same person ("Yes"/"No")?

Figure 6.2 Multimodal prompt containing two images and text: the prompt
instructs the language model to check whether the two pictures show the
same person (expected answer: “Yes”) or not (expected answer: “No”).

What is base64 encoding?

The base64 encoding is a way to encode binary data as a printable string. As
the name base64 suggests, the alphabet we use for the string is based on 64
characters. This means we can represent each character using six bits (because
six bits allow representing 2° = 64 possible characters). As computers store data
at the granularity of bytes (i.e., 8 bits), it is convenient to encode groups of three
bytes (i.e., 24 bits) together. Using base64 encoding, three bytes can be used to
represent four characters (as 24/6 = 4).

In Python, we can use the base64 library to encode binary data in the base64 format.
The following code opens an image file stored at image_path and encodes it using
base64 format:

with open(image path, 'rb') as image file:
encoded = base64.b64encode (image_file.read())

We have transformed the binary image data into a string in base64 format. Before
sending such images to GPT-4o, we still need to make one final transformation: we
must represent the string using the UTF-8 encoding.

What is UTF-8 encoding?

UTF-8 is a way to represent string data. It is extremely popular and used by about
98% of sites on the web. UTF-8 can represent over a million characters, covering
a variety of languages. We can represent those characters using a fixed number of
bytes: four bytes to represent each character. However, this is inefficient because
it does not exploit the fact that certain characters are much more common than
others. If we encode common characters with fewer bytes while reserving many-
byte representations for the less common ones, we can represent the same text

6.3.3

6.3 Tagging people in images 109

with fewer bytes. This is what UTF-8 does, and because different characters may
need a different number of bytes for representation, it is also called a variable-
length standard. At the same time, UTF-8 is designed to be backward-compatible
with the older ASCII standard, using the same encoding as ASCII for the first 128
characters.

To transform our base64 string encoding of the image into UTF-8, we can use
Python’s decode function. Assuming that the image is still encoded in the encoded
string variable, we can do so using the following code:

image = encoded.decode('utf-8")

The resulting image, encoded as UTF-8 text string, is suitable as input for GPT-4o.
Next, we will see how we can upload images in this format to the OpenAl platform.
After uploading them, we can include references to those pictures in our prompts.
Images are generally specified as components of the prompt:

{'type':'image url', 'image url':{'url':image url}}

Here, image_url represents the URL that leads to the image to analyze. Previously,
we used publicly accessible URLs for that. Now we are analyzing private images that
we will send to OpenAl to be used only to process specific requests. Assuming that
image still represents the image encoded as a string, we can set the image URL as
follows:

image url = {'url':f'data:image/png;base64, {image}'}

This code assumes that the image is of type PNG (if not, replace the string png
with the appropriate format identifier such as jpeg). The URL combines metadata
about the image (such as the image type and encoding) with a string suffix represent-
ing the picture itself.

Sending locally stored images to OpenAl

We will use this project as an opportunity to demonstrate an alternative way to interact
with GPT models. Doing so will give us insights into how OpenAlI’s Python library
works internally. So far, we have been using Python wrappers that send requests to
OpenAl’s platform in the background. To send our local images to GPT-4o, we will
create those requests ourselves.

We use Python’s requests library to create HTTP requests, sending our prompts
(with text and images) to GPT-40 and collecting the answer. More precisely, we will
be sending HTTP Post requests. This is the type of request accepted by the OpenAl
platform. Such requests can be sent via the requests.post method.

Our requests will contain all relevant information needed by GPT-4o to solve the
task we are interested in (in this case, verifying whether two images show the same
person). First, we need to include headers in the request. We will use the following
headers:

110

CHAPTER 6 Analyzing images and videos

headers = ({
'Content-Type': 'application/json',
'Authorization': 'Bearer ...'

}

You see that we’re specifying headers as a Python dictionary. For our use case, we
only need to store two properties: the type of our payload (we plan to send JSON
content) and our access credentials (the three dots represent our OpenAl access
key).

Next, we need to specify the payload—that is, the content that we primarily want
to send via the request:

payload = {

'model': 'gpt-40', @ Model specification
'messages': [
{'role': 'user', 'content': ...} @ First message

1,
'max_tokens':1 € Output length

}

You may notice that the payload contains exactly the fields we would typically specify
in our invocations to the completions.create method. That is not a coincidence, as
the latter method creates requests with a similar payload internally. First, the payload
specifies the model (@): gpt-40 (to be able to process multimodal input prompts).
We specify a list of messages with a single entry (@). This message is marked as
originating from the user ('role':'user'), and its content, abbreviated by three
dots, will contain text instructions and images. Finally, we limit the answer length to a
single token ('max_tokens':1) (@). That makes sense because we are searching for
a binary result: either the same person appears in multiple input images (expected
answer: “Yes”) or not (expected answer: “No”).

Having generated headers and a payload, we can invoke GPT-40 using the following
code:

response = requests.post(
'https://api.openai.com/vl/chat/completions',
headers=headers, json=payload)

As the first parameter, the invocation of requests.post specifies the URL to send
the request to. In this case, 'https://api.openai.com/vl/chat/completions'
indicates that we want to perform a task of type Completion, using one of OpenAl’s
chat models (which applies to GPT-40). We use the headers and payload created
previously.

The response contains the GPT-4o result object. We can access the answer (indi-
cating whether two images show the same person) via the following code snippet:

response.json() ['choices'] [0] ['message'] ['content']

6.3.4

6.3 Tagging people in images 111

The end-to-end implementation
We are now ready to discuss the end-to-end implementation! Listing 6.2 contains
code for tagging people in pictures. Have a look at the main function (@) first. As
discussed previously, users specify three directories as command-line parameters
(@): a directory containing pictures to tag, a directory containing people to use for
tagging, and an output directory.

As a first step, we load all images to tag as well as all images of the people to search
for. We use the load_images function (@) for that. This function retrieves a list
of all files in the input directory and then considers those ending with the suffix
.png (i.e., we consider all PNG images). As discussed previously, we need to encode
images as strings (via base64 encoding) that are ultimately represented via the UTF-8
encoding. The result of 1oad_images is a Python dictionary mapping filenames to the
associated, encoded images. This dictionary is returned as the result of the function.

Listing 6.2 Tagging people in pictures stored locally

import argparse
import base64
import os
import requests
import shutil

def load images(in_dir): © Loads images from disk
nnm Toads images from a directory.

Args:
in _dir: path of input directory.

Returns:
directory mapping file names to PNG images.
W
name to_image = {}
file names = os.listdir(in_dir)
for file name in file names:
if file name.endswith('.png') :
image path = os.path.join(in dir, file name)
with open(image _path, 'rb') as image file:
encoded = baseé64.b64encode (image_file.read())
image = encoded.decode ('utf-8")
name_to_image[file name] = image

return name_to_image
def create prompt (@ Creates a multimodal prompt

person_image, image to_label) :
"mn Create prompt to compare images.

Args:
person_image: image showing a person.

112

def

CHAPTER 6 Analyzing images and videos

image to label: image to assign to a label.

Returns:

prompt to verify if the same person appears in both images.
W
task = {'type':'text"',

'text':'Do the images show the same person ("Yes"/"No")?'}

prompt = [task]
for image in [person image, image to label]:

image url = {'url':f'data:image/png;base64, {image}'}

image msg = {'type':'image url', 'image url':image url}

prompt += [image msg]

return prompt

call 1lm(ai_key, prompt): © Generates an answer for the prompt
" Call language model to process prompt with local images.

Args:
ai_key: key to access OpenAI.
prompt: a prompt merging text and local images.

Returns:
answer by the language model.
W
headers = {
'Content-Type': 'application/json',
'Authorization': f'Bearer {ai key}'
}
payload = {
'model': 'gpt-4o',
'messages': [
{'role': 'user', 'content': prompt}
1,
'max_tokens':1
}
response = requests.post (
'https://api.openai.com/vl/chat/completions’',
headers=headers, json=payload)

return response.json() ['choices'] [0] ['message'] ['content']
if name == ' main_': @) Tagsimages with people
parser = argparse.ArgumentParser () © Command-line parameters

parser.add argument ('peopledir', type=str, help='Images of people')
parser.add argument ('picsdir', type=str, help='Images to tag')
parser.add_argument ('outdir', type=str, help='Output directory')
args = parser.parse_args()

people_images = load_images (args.peopledir)
unlabeled images = load_ images (args.picsdir)

for person name, person_image in people images.items() : (’ Over people

6.3.5

6.3 Tagging people in images 113

for un_name, un_image in unlabeled images.items() : (7] Over images
prompt = create_prompt (person_image, un_image)
ai_key = os.getenv('OPENAI API KEY')
response = call llm(ai_key, prompt)
description = f'un name versus person name?'
print (f'description -> response')

if response == 'Yes': © Copies image in case of a match
labeled name = f'person name[:-4]un name'
source_path = os.path.join(args.picsdir, un_name)
target_path = os.path.join(args.outdir, labeled name)
shutil.copy (source path, target path)

After applying the load_images function to each of the two input directories, we
end up with two Python dictionaries. One maps filenames of images showing people
(which, by convention, are the names of those people) to the corresponding encoded
image. The other maps the filenames of images to be tagged to the encoded images.

Our goal is to match each picture to be tagged to all people that appear in it.
As we use prompts comparing only two pictures at once, we need to look at each
combination of a person and of an image to tag. That is why we use a double-nested
for loop: one iterates over people (@) and the other over images to tag (@).

For each combination of an image to tag and a person, we create a multimodal
prompt using create_prompt. This function (@) assembles both encoded pictures,
together with text instructions, into a prompt. The text instructions (“Do the images
show the same person (“Yes”/“No”)?”) define the task as well as the expected output
format (“Yes” or “No”). Each prompt is sent to GPT-40 via call_11lm. As discussed
previously, this function (@) uses the requests API to send locally stored images,
together with text instructions, to GPT-4o. If GPT-40 answers “Yes,” the currently
considered person appears in the currently considered image to tag.

If the person appears in the image (@), we tag the image as follows. We use the
name of the person (the name of the associated picture file without the .png suffix)
and prepend it to the name of the file to tag. Next, we copy the file to tag to the
output directory using the new filename (which indicates the tagging result).

Trying it out
Let’s try it! If you have real vacation pictures to tag, you can use them. Otherwise, you
will find suitable test data on the book’s companion website. Look for the Tagging link
to access a zipped file; download this file and unzip its contents. After decompression,
you should see three subdirectories in the resulting folder:
people—A folder containing pictures of people (in this case, actors from the
Avengers series). Filenames contain the names of the corresponding actors.
pics—Another set of pictures (in this case, more pictures of the same actors as
in the people folder) to tag with the names of actors.
processed—An empty folder that can be used as the output directory.

114

6.4

6.4.1

CHAPTER 6 Analyzing images and videos

We’ll assume that the decompressed folder is stored under the path /tagging (e.g.,
the path /tagging/people then leads to the subfolder with pictures of people to
search for). Execute the code by running the following command from the terminal:

python listing2.py /tagging/people /tagging/pics /tagging/processed

TIP If you are invoking the code on a Windows platform, you will have to
adapt these paths. In particular, you will have to replace / with\

During processing, the implementation prints updates on whether specific people
appear in specific pictures. The sample data contains two people to look for and
four images to tag. This means processing should not take more than a few minutes
(typically less than two).

After processing finishes, look in the output folder. You should see pictures to
tag, prefixed with the names of people appearing in them. Not bad for a few lines of
Python code!

Generating titles for videos

Besides many pictures (which we can now automatically tag, thanks to the code
outlined in the previous section!), you also took quite a few videos on vacation.
Automatically assigned filenames are not very informative. Which video is the one
showing you swimming in the ocean? It would be great to assign meaningful captions
to those videos and help you find the ones you’re looking for faster. But who has
time to manually label videos? Again, we can use language models to do that task
automatically.

Overview

We will develop a system that automatically assigns suitable titles to videos. This system
uses GPT-4o in the background. To assign titles to videos, we will submit multimodal
prompts containing video frames (i.e., images) together with text instructing the
language model to come up with a title. Figure 6.3 shows an example prompt.

Generate a concise title for the video.

Figure 6.3 Multimodal prompt for video processing: based on a selection of video frames,
the language model is instructed to generate a suitable title.

6.4.2

6.4 Generating titles for videos 115

It consists of multiple video frames (we only see the first and the last frame in
figure 6.3; the three dots represent the ones in between) and the text instructions
“Generate a concise title for the video.” Note that we have to pay for each video frame
we’re submitting to GPT-40. That means video data processing via GPT-4o quickly
becomes expensive!

As an answer, GPT-40 should send back a reasonable title. In the example shown
in figure 6.3, this can be a reference to cars and, potentially, even a reference to the
location (shown as white text in the frames).

Encoding video frames

First we need to discuss video formats. In the last section, we saw how to encode
images stored locally. Now we will expand that to videos. Ultimately, our goal is to
extract a sequence of frames. However, videos are typically not stored as a sequence
of frames but using more efficient encodings. For us, that means we first have to
extract images from a video.

We will use the OpenCV library for that. OpenCV is the Open Source Computer
Vision Library. It provides various functionalities for computer vision as well as for
image and video processing in general. Of course, we will use GPT-40 to do the
computer vision part. Nevertheless, OpenCV will be useful for extracting frames from
videos. If you haven’t done so already, now would be a good time to set up OpenCV
by following the instructions in section 6.1.

Let’s assume that the installation has worked and you can access OpenCV from
Python. The corresponding Python library is called cv2 (a name you will often see as
a prefix in the following code snippets).

To work with a video stored locally, we first need to open the corresponding file.
Run this code to open a video stored under the path video_path:

video = cv2.VideoCapture (video path)

Using the variable video, we can now read the video’s content via the read method:

success, frame = video.read()

The result consists of tuples with two components: a success flag and a video frame.
The success flag indicates whether we were able to read another frame. That’s no
longer the case once we reach the end of the video. In that case, we do not obtain a
valid frame, and the success flag is set to False.

Let’s assume that we are able to read another frame. In that case, we will turn the
frame into an image we can send to GPT-40. OpenCV has us covered and provides
the corresponding functionality:

_, buffer = cv2.imencode('.jpg', frame)

The imencode function turns a video frame into an image of the corresponding type.
Here, we transform the frame into a JPEG picture. From the resulting tuple, the
second component (buffer) is interesting for our purposes. It contains a binary
representation of the corresponding picture.

116

6.4.3

CHAPTER 6 Analyzing images and videos

That’s a situation we know from the previous section: we have a binary representa-
tion of an image and want to turn it into a suitable format for GPT-40. Again, we first
encode the image as a string via base64 encoding and then represent that string via
UTF-8:

encoded = baseé4.b64encode (buffer)
frame = encoded.decode('utf-8")

The resulting frame is encoded properly to be included as part of a GPT-40 prompt.
Once you’re done processing the video, close the corresponding video capture object
using the following code:

video.release ()

Next, we will put everything together to generate video titles for arbitrary videos.

The end-to-end implementation

Listing 6.3 generates titles for videos stored locally. The only input parameter is the
path to the video. Given that, the implementation extracts some of the video frames
(@) and then generates a prompt instructing GPT-4o to generate a video title based
on a sample of frames. After sending this prompt to the language model, the answer
contains a proposed video title.

Listing 6.3 Generating a video title via language models

import argparse
import cv2
import base64
import openai
import time

client = openai.OpenAI ()

def extract frames(video path): @ Extracts video frames
nn Extracts frames from a video.

Args:
video_path: path to video file.

Returns:
list of first ten video frames.
W
video = cv2.VideoCapture (video_path)
frames = []
while video.isOpened() and len(frames) <= 10:
success, frame = video.read()
if not success:
break

_, buffer = cv2.imencode('.jpg', frame)
encoded = base64.b64encode (buffer)

6.4 Generating titles for videos 117

frame = encoded.decode('utf-8")
frames += [frame]

video.release ()
return frames

def create prompt (frames) : @ Creates multimodal prompt
"m o Create prompt to generate title for video.

Args:
frames: frames of video.

Returns:

prompt containing multimodal data (as list).
W
prompt = ['Generate a concise title for the video.']
for frame in frames[:10]:

element = {'image':frame, 'resize':768}

prompt += [element]
return prompt

def call llm(prompt) : © Queries the language model
"m o Query large language model and return answer.

Args:
prompt: input prompt for language model.

Returns:
Answer by the language model.

nnon

for nr retries in range(1l, 4):

try:
response = client.chat.completions.create (
model="'gpt-40"',
messages=[
{'role':'user', 'content':prompt}
]
)
return response.choices[0] .message.content
except:

time.sleep(nr_retries * 2)
raise Exception('Cannot query OpenAI model!')

if name_ == '_main_ ':

parser = argparse.ArgumentParser ()
parser.add argument ('videopath', type=str, help='Path of video file')
args = parser.parse_args()

frames = extract frames (args.videopath) O Titles videos
prompt = create prompt (frames)

title = call_llm(prompt)

print(title)

118

6.4.4

CHAPTER 6 Analyzing images and videos

The code extracts video frames using extract_frames (@). As discussed previously,
this function uses the OpenCV library to open the video for frame extraction and
proceeds to read each frame consecutively. We will only use up to 10 frames to
generate a video title. That’s why extraction ends after at most 10 frames (or fewer
if the video is very short). Each extracted frame is encoded according to GPT-40’s
requirements (i.e., JPEG images encoded as strings). The result of the function is a
list of encoded frames.

During prompt generation (@), we combine relevant text instructions (“Generate
a concise title for the video.”) with the first 10 frames from the video. To send
those images, along with instructions, to GPT-4o, we use a Python wrapper again
(©). Alternatively, we can create requests ourselves (as in the previous project). The
response of the language model should contain a suitable title for our video.

Of course, we are only sending the first few frames of the video. If the video content
changes drastically after those few frames, the title may not be optimal. The reason
we only send 10 frames is computation fees. Keep in mind that you’re paying for
each picture submitted in the prompt! Sending all frames of larger videos is typically
prohibitively expensive. That’s why we content ourselves with sending only a small
subset of video frames.

Trying it out

Let’s try our video title generator! On the book’s companion website, this chapter’s
section includes a Cars link that will guide you to a short video from a traffic camera
showing traffic on a busy road. Download the video to your local machine.

Open the terminal, and change to the directory containing the code for this
chapter. We’ll assume that the video was downloaded into the same directory (if not,
replace the name of the video, cars.mp4, with the full path leading to it).

Run the following command:

python listing3.py cars.mp4

After a few seconds of computation time, you should see a proposal for a video title:
for example, “Traffic Conditions on I-5 at SR 516 and 188th Street” (the precise title
may vary across different runs due to randomization).

Note that the title integrates information—the name of the location—that is only
available in the form of text in the video. Using GPT-4o0 to extract text from images
may be useful in various scenarios: for example, to extract data from forms.

Summary 119

Summary

GPT-40 processes images as well as text.

Prompts can integrate text snippets and images.

GPT-40 supports multiple image formats.

Images can be specified via a public image URL.

Locally stored images can be uploaded to OpenAl.

GPT-4o0 processes images in string encoding.

Processing images is costly compared to processing text. The cost of image
processing may depend on the image size. Processing images with a low degree
of detail reduces costs.

The base64 library can encode images as strings.

Decompose videos into their frames to send them to GPT-4o.

The OpenCV library can be used to extract frames from videos.

Analyzing audio data

This chapter covers

= Transcribing audio data
= Translating audio data
= Generating speech

Watch any credible science fiction TV show or movie, and you won’t see people
typing to interact with their computers! Whether it’s Star Trek or 2001: A Space Odyssey
(both released in the 1960s), people speak to (not type into) their machines. And
there are good reasons for that! For most users, voice is the most natural form of
communication (because that’s the one they start with). No wonder people imagined
speaking with computers long before that was technically feasible.

Reality has now caught up with science fiction, and voice assistants, including
the likes of Amazon’s Alexa, Google’s Assistant, and Microsoft’s Cortana (among
many others), are ubiquitous. The newest generation of speech recognition (and
speech generation) models have reached near-human levels of proficiency. And voice-
based interaction with computers is, of course, only one use case for this amazing
technology.

120

7.1

7.1 Preliminaries 121

In this chapter, we will use OpenAlI’s latest models for speech transcription, transla-
tion, and speech generation for several mini-projects. First, we will see that transcrib-
ing voice recordings to text takes just a few lines of Python code. After that, we’ll
look at more complex applications, starting with a voice-based version of our natural
language database query interface from chapter 5. Whereas we previously had to type
in questions, we can now simply speak them, and the system will produce an answer.
Finally, we will see how to build a simultaneous translator that turns our voice input
into voice output in a different language.

Preliminaries

Before we can start with all of those cool projects, we need to perform a few setup
steps. First, you will need to record voice input via your computer. For that to work,
you first need some kind of microphone. Most laptops nowadays have a built-in
microphone. It doesn’t have to be a professional microphone; any way of recording
sound on your computer will do. But beyond the microphone, you also need software
that can be activated from Python to turn audio recordings into files. For that, we
will use Python’s sounddevice library. Run the following command in the terminal
to install this library in the correct version:

pip install sounddevice==0.4

This library interacts with Python’s scipy library, which you should also install. Run
the following command in the terminal:

pip install scipy==1.11

Together, those libraries will enable you to record voice input (which you can then
transcribe, translate, or summarize using OpenAl’s models).

We have covered the input side, but what about the output? For some of the
following projects, we not only want to listen to audio but also generate it! To generate
speech, we will use OpenAlI’s generative Al models again. But after generating speech
stored in an audio file, we still need suitable libraries to play speech on our computer
from Python. We will use the playsound library for that. Run this command in the
terminal to install this library in the correct version:

pip install playsound==1.3

On certain operating systems (in particular, macOS), you additionally have to install
the pyobjc library using the following command:

pip install PyOb3jC==10.0

If you haven’t done so already when working through the last chapter, install the
requests library (enabling you to send requests directly to OpenAlI’s API):

pip install requests==2.31.0

122

7.2

7.2.1

CHAPTER 7 Analyzing audio data

Well done! If you didn’t encounter any error messages running these commands,
your system is now configured to process audio data with OpenAlI’s Transformer
models. Let’s start with our first project in the next section.

Transcribing audio files

Having recently started your job at Banana, you are overwhelmed by the number of
meetings. There are just too many meetings to attend, but you don’t want to miss any-
thing important! Fortunately, Banana has the good sense to create audio recordings
of all employee meetings as a general rule (with the consent of all participants). But
listening to all the recordings of those meetings is still too time-consuming.

It would be great to have transcripts of meetings, enabling you to quickly search
for anything relevant to your unit via a simple text search. Unfortunately, Banana
doesn’t offer such transcripts out of the box, and none of your colleagues are willing
to take notes during those meetings. Would it be possible to create such transcripts
automatically? In this section, we will see that it’s not only possible but actually easy
to create such an automated transcription service.

Transcribing speech

For transcribing speech to text, we will use OpenAI’s Whisper model. Unlike the
models we have used so far (in particular, GPT models), Whisper is specifically
targeted at audio transcriptions.

What is the Whisper model?

Whisper is a Transformer model trained on large numbers of audio recordings (more
than 680,000 hours of recordings, to be precise!). Whisper was trained on a mul-
tilingual audio corpus and therefore supports a broad range of input languages
that it transcribes to English (i.e., you get speech transcription and translation in a
single step).

Similar to the GPT variants, we will access Whisper via OpenAl’s Python library. This
means no additional setup is required on your local machine (assuming that you
have installed OpenAlI’s Python library, as described in chapter 3).

In this section, we will use the Whisper model to transcribe an audio file to disk.
Let’s assume that our audio file is initially stored on disk. Whisper supports a wide
range of file formats: MP3, MP4, MPEG, MPGA, M4A, WAV, and WEBM. At the time
of writing, the file size is limited to 25 MB. Given such a file, let’s assume that its file
path is stored in the variable audio_path. Now all it takes to transcribe its content to
text are the following few lines of Python code:

import openai
client = openai.OpenAI ()

with open(audio path, 'rb') as audio file: @ Opens the audio file

LB 813 8238

7.2.2

7.2 Transcribing audio files 123

@ Transcribes the content
transcription = client.audio.transcriptions.create (
file=audio_file, model='whisper-1"')

As afirst step (@), we need to open our audio file. For that, we can use Python’s open
command. Note the use of the rb flag as a parameter of the open command. This
flag indicates to Python that we want to read the file (r) and that we are opening a
binary file (b). A binary file is a file that does not contain readable characters. Sound
files, such as the one we are trying to open here, generally qualify as binary files. After
processing the first line, the file content is accessible via the variable audio_file.
As asecond step (@), we perform the actual transcription. We now use a different
endpoint, specialized for audio data processing. From that endpoint, we invoke the
transcription service (transcriptions.create) using two parameters:

file—A reference to the file to transcribe
model—The name of the model for transcription

We refer to the previously opened file (audio_file) and select whisper-1 as our
transcription model. The result of transcription is an object containing the tran-
scribed text and metadata about the transcription process. We can access the tran-
scribed text via the text field (i.e., via transcription. text).ents. After decompres-
sion, you should see three subdirectories in the resulting folder:

As you see, transcribing text takes just a few lines of Python code! In the next
subsection, we will use this code to build a simple transcription service.

End-to-end code

Listing 7.1 shows the code for a simple transcription program. The actual trans-
cription happens in the transcribe function (@). This is essentially the code we
discussed in the previous section. Given the path to an audio file as input, it returns
the transcribed text.

import argparse
import openai

client = openai.OpenAI ()

def transcribe (audio path) : @ Transcribes audio to text
"n v Transcribe audio file to text.

Args:
audio path: path to audio file.

Returns:
transcribed text.

nnon

with open(audio_path, 'rb') as audio file:

124

7.2.3

7.3

CHAPTER 7 Analyzing audio data

transcription = client.audio.transcriptions.create (
file=audio file, model='whisper-1')
return transcription.text

if _ name_ == '__main_ ': @ Main function

parser = argparse.ArgumentParser ()
parser.add_argument ('audiopath', type=str, help='Path to audio file')
args = parser.parse_args ()

transcript = transcribe (args.audiopath)
print (transcript)

The main function (@) reads the path to an audio file (which should contain
speech) as input. After invoking the transcriptions.create function, it prints the
transcribed text on the screen.

Trying it out

To try it, we first need an audio file with recorded speech. You can use any such
file (including a recording of your company meetings, if available) as long as it
complies with the format and size restrictions outlined in section 7.2.1. However,
keep in mind that you pay per minute of audio data processed! At the time of writing,
using Whisper via the OpenAl library costs $0.006 per minute (you can find more
up-to-date information about pricing at https://openai.com/pricing). Processing
long recordings can therefore be expensive.

If you don’t want to use your own recording, have a look at the book’s companion
website. You can find a short recording in the Audio item in this chapter’s section.
Download this recording to use it for transcription (by default, the filename should
be QuoteFromTheAlchemist.mp3).

Listing 7.1 is also available on the book’s companion website (item listingl.py in
the chapter 7 section). After downloading it, switch to the corresponding repository in
the terminal. Assuming that you downloaded the audio file into the current directory,
run the following command in the terminal to transcribe the sample file:

python listingl.py QuoteFromTheAlchemist.mp3

If everything goes well, you should see the following output in the terminal (for the
sample file from the website, that is):

Two years ago, right here on this spot,
I had a recurrent dream, too.

Click the sample file to listen to it yourself; you will find the transcript to be accurate!
Next, we will integrate speech transcription into more complex applications.

Querying relational data via voice

Analyzing tabular data is fun! A significant part of your job at Banana consists of
poring over data tables, extracting insights, and preparing corresponding reports and

https://openai.com/pricing

7.3.1

7.3.2

7.3 Querying relational data via voice 125

visualizations. You’re using the text-to-SQL interface from chapter 5 to automatically
translate text questions to formal queries (written in SQL), execute them, and present
the query results. This makes analyzing data easier and is faster than writing complex
SQL queries from scratch.

However, there is a problem: you think better when pacing back and forth in your
office while analyzing data. But typing queries forces you back to your desk every time.
Can’t we modify our query interface to accept spoken, as opposed to typed, input?
It turns out that indeed, we can! In this section, we will see how to use OpenAl’s
models to enable a simple voice query interface for tabular data.

Preliminaries

We will build a voice query interface that processes spoken questions on tabular
data. It is an extension of the query interface discussed in chapter 5. We assume that
spoken questions refer to data stored in SQLite, a popular system for processing
queries on relational data. See chapter 5 for a short introduction to SQLite and
installation instructions. To try the following code, you will first need to install the
SQLite database system.

The SQLite system processes queries formulated in SQL, the structured query
language. Fortunately, you won’t need to write SQL queries yourself (we will use a
language model to write those SQL queries for us). However, language models are not
perfect and may occasionally produce incorrect queries. To recognize those cases, it is
useful to have a certain degree of SQL background. You will find a short introduction
to SQL in chapter 5. For more details, have a look at www.databaselecture.com.

Our voice query interface processes spoken questions, so you need to ensure that
your microphone is working. Also, to execute the following code, make sure your
voice query interface has all the required permissions to access the microphone.

Overview
Our voice query interface processes spoken questions on tabular data stored in an
SQLite database. For instance, having loaded a database with data about computer
game sales, we can ask questions such as the following:

“How many games did Activision sell in 2023?”

“How many action games were released between 2019 and 2021?”
On receiving a spoken question, the voice query interface performs the following
steps:

Transcribes the spoken question into text

Translates the text question into an SQL query

Processes the SQL query on the data using SQLite

Displays the query result to the user
Figure 7.1 illustrates the different processing steps in more detail. The process is
executed for each spoken question.

www.databaselecture.com

126

7.3.3

CHAPTER 7 Analyzing audio data

Spoken question

[Speech transcription]

Text question

Data structure—»{ Natural language query interface]

Query

Data —»(Data-processing tool]

Query result

Figure 7.1 Our voice query interface transcribes spoken questions into text, translates text questions
into SQL queries, and finally processes those queries and displays the query result.

Recording audio

For our transcription application, we assumed that an audio recording was already
available. For our new project, we want to issue voice queries repeatedly. That means
we have to record them ourselves. How can we do that in Python? First, we need to
import two libraries for precisely that purpose:

import sounddevice © Records audio
import scipy.io.wavfile @ Stores .wav files

The sounddevice library (@) contains many useful functions to record audio input
from a microphone. What will we do with our recordings? We will store them as .wav
files on disk. In the previous section, we saw how to transcribe audio data stored in
that format. This is where the second library (@), scipy, comes into play: it enables
us to store the recordings in .wav format on disk.

When recording, we need to make two important choices:

At what sample rate should we read input from the microphone?

How many seconds of speech should we record?

We will record for a duration of 5 seconds. Five seconds should suffice for most voice
queries. You can try different settings if the recording tends to terminate too soon or if
you find yourself waiting often after finishing your voice queries. A more sophisticated
implementation would record continuously or stop recording after a speaking pause
is detected. To keep things simple in terms of the recording mechanism, we will just
record for a predetermined amount of time for each voice query.

7.3.4

7.3 Querying relational data via voice 127

For the sampling rate—that is, the number of audio data points stored per second—
we will choose 44,100 Hertz. This is the standard for CD-quality recordings. The total
number of frames—the number of audio data points received in total—is then 44,100
times the number of seconds we want to record (in our case, that’s 5 seconds). We
store the number of frames and the sampling rate in auxiliary variables:

sample rate = 44100
nr_frames = 5 * sample_rate

Now we’re ready to record using the rec function of the sounddevice library:

recording = sounddevice.rec (© Sets up recording
nr frames, samplerate=sample rate, channels=1)
sounddevice.wait () @ Waits for recording to finish

The first command (@) starts a recording from the input microphone, providing as
input the total number of frames to record as well as the sampling rate. The number
of channels (the third parameter in our invocation) depends on the microphone
used for the recording. If your microphone has more than one channel, try a higher
value here. After starting the recording, we just need to wait until the predetermined
recording time has passed. We accomplish that via the wait command (@).

After executing the previous code, the variable recording contains the recorded
audio data. As discussed earlier, we want to store the recording as a .wav file on disk.
All it takes is a single command from the scipy library:

scipy.io.wavfile.write (output_path, sample rate, recording)

That’s it! We have recorded a few seconds of audio input and stored it in a file on
disk.

End-to-end code

Listing 7.2 shows the code for our voice query interface. Beyond our default libraries,
openai and argparse, we import (@) the libraries for audio processing (sounddevice
and scipy), as well as the sqlite3 library (which we will need for processing SQL
queries) and the time library. The latter library is required to wait for a specified
amount of time (for voice input). Next, we will discuss the functions introduced in

listing 7.2.

import argparse @ Imports libraries
import openai

import re

import scipy.io.wavfile

import sounddevice

import sqglite3

import time

128 CHAPTER 7 Analyzing audio data

client = openai.OpenAI ()

def get structure(data path): @ Extracts the database schema
wwn BExtract structure from SQLite database.

Args:
data_path: path to SQLite data file.

Returns:
text description of database structure.
W
with sglite3.connect (data_path) as connection:
cursor = connection.cursor ()

cursor.execute ("select sqgl from sglite master where type = 'table';
table_rows = cursor.fetchall()
table_ddls = [r[0] for r in table_rows]

return '\n'.join(table_ddls)

def record(output_path) : © Records audio
"mn Record audio and store in .wav file.

Args:
output_path: store audio recording there.
W
sample_rate = 44100
nr_frames = 5 * sample_rate
recording = sounddevice.rec(
nr frames, samplerate=sample_rate, channels=1)
sounddevice.wait ()
scipy.io.wavfile.write (output_path, sample rate, recording)

def transcribe (audio_path) : O Transcribes audio
"mn Transcribe audio file to text.

Args:
audio_path: path to audio file.

Returns:
transcribed text.
W
with open(audio_path, 'rb') as audio file:
transcription = client.audio.transcriptions.create(
file=audio file, model='whisper-1"')
return transcription.text

def create prompt (description, question): © Creates atext-to-SQL prompt
"mn Generate prompt to translate question into SQL query.

Args:
description: text description of database structure.
question: question about data in natural language.

Returns:

def

def

7.3 Querying relational data via voice 129

prompt for question translation.
W
parts = []
parts += ['Database:']
parts += [description]
parts += ['Translate this question into SQL query:']
parts += [question]
parts += ['SQL Query:']
return '\n'.join(parts)

call 1lm(prompt) : @ Translates to SQL
"r v Query large language model and return answer.
Args:
prompt: input prompt for language model.
Returns:

Answer by language model.
W
for nr_retries in range(1l, 4):
try:
response = client.chat.completions.create(
model="'gpt-40"',
messages=[
{'role':'user', 'content':prompt}
]
)
return response.choices[0] .message.content
except:
time.sleep(nr_retries * 2)
raise Exception('Cannot query OpenAI model!')

process_query(data path, query): @ Processes the SQL query
" processes SQL query and returns result.

Args:
data_path: path to SQLite data file.
query: process this query on database.

Returns:
query result.

W

with sglite3.connect (data_path) as connection:
cursor = connection.cursor ()
cursor.execute (query)
table_rows = cursor.fetchall()
table_strings = [str(r) for r in table_ rows]
return '\n'.join(table strings)

if name == ' main ': © Processes the voice queries

parser = argparse.ArgumentParser ()

130

CHAPTER 7 Analyzing audio data

parser.add_argument ('dbpath', type=str, help='Path to SQLite data')
args = parser.parse_args ()

data_structure = get_structure (args.dbpath)

while True: @ Main loop

user input = input ('Press enter to record (type quit to quit).')
if user input == 'quit':

break
audio path = 'question.wav' @ Transcribes voice input

record (audio_path)
question = transcribe (audio_path)
print (f 'Question: {question}')

prompt = create prompt (data structure, question) @ SOQL translation
answer = call 1lm(prompt)

query = re.findall('“‘sgl(.*)"“'', answer, re.DOTALL) [0]

print (£'SQL: {query}')

try: (® Executes the SQL query
answer = process_query (args.dbpath, query)
print (f'Answer: {answer}')

except:

print ('Error processing query! Try to reformulate.')

We process voice queries that refer to data in a relational database. To translate
voice commands into formal queries formulated in SQL, we need to know a little
about the database structure. In particular, we need to know the names of the
data tables and their columns (i.e., we need to know the database schema). The
function get_structure (@) retrieves the commands used to create the database
schema. These commands contain the names of tables and columns, as well as the
data types associated with the table columns. We will use those commands as part of
a prompt, instructing the language model to translate questions into SQL queries.

Before we can translate questions, we first need to record them from the mi-
crophone. This is where the function record (@) comes into play. It uses the
sounddevice library to record 5 consecutive seconds of audio input from the mi-
crophone. The resulting audio recording is stored as a .wav file on disk at a path
specified as function input (parameter output_path). Strictly speaking, storing the
audio input as a file is not necessary (we can process it directly in memory). However,
storing audio input on disk can be useful for debugging purposes. If our system
fails to translate voice input to appropriate queries, we can listen to the audio file
ourselves to assess the level of background noise and overall audio quality. If the
microphone is not set up properly (a common problem), our audio files will contain
nothing but silence.

After recording input from the microphone, we first want to transcribe voice input
to text. We use the transcribe function (@) for that. Given a path to an audio file
(in this case, recorded audio input from the microphone), it returns a transcript
generated using OpenAl’s Whisper model (the same one we used previously).

7.3.5

7.3 Querying relational data via voice 131

Next, we want to translate questions into formal SQL queries. Of course, we will
use language models for that task. The create_prompt function (@) generates a
suitable prompt. The prompt contains the previously extracted description of the
database, the transcribed question, and the task description. The call_11lm function
(@) calls GPT-4o to translate questions, given the previously mentioned prompt as
input. Finally, the process_query function (@) processes the resulting queries on
the database and returns the query result.

Time to put it all together! Our voice query interface takes the path to an SQLite
database file as input (@). After extracting the database schema, we enter the main
loop (@). Each iteration processes one voice query (unless the user enters quit, in
which case the program terminates). To keep things simple, we wait for the user to
press the Enter key before recording voice input (a more sophisticated version would
record continuously). After that, we record voice input from the microphone. We
print out the transcribed question and store the recording itself as question.wav on
disk (). Next, we translate the transcribed text into a query (@), execute it (®)
(we need exception handling here in case of incorrect queries!), and show the result
to users.

Trying it out
Listing 7.2 is listing 2 in the chapter 7 section on the book’s website. Download the
code, and switch to the containing folder in your terminal.

Beyond the code, we also need an SQLite database to try our voice query interface.
We discuss in chapter 5 how to set up an example database containing information
about computer game sales. We assume this database is stored in the same folder as
your code and named games.db (of course, you are free to use any SQLite database
you like to try the voice query interface). Now enter the following command in the
terminal:

python listingl.py games.db

Update the path to the database file to the one you want to access. Depending on
your operating system and security settings, you may be asked to enable microphone
access for your application. After enabling microphone access, press Enter, and ask a
question! For instance, using the games database, you may ask “How many games
were sold in 2007?” or “How many games were released for each genre?” You should
see output like the following:

Press enter to record (type quit to quit).

Question: How many games were released for each genre?
SQL: SELECT genre, COUNT(*) as num games

FROM games

GROUP BY genre

Answer: ('Action', 3316)

('Adventure', 1286)

('Fighting', 848)

('Genre', 1)

132

7.4

7.4.1

CHAPTER 7 Analyzing audio data

('Misc', 1739)
('Platform', 886)
('"Puzzle', 582)
('Racing', 1249)
('Role-Playing', 1488)
('Shooter', 1310)
('Simulation', 867)
('Sports', 2346)
('Strategy', 681)

This output includes the transcribed question, the translated SQL query, and the
query result (or an error message if the query cannot be executed). Clearly, it’s a long
way from a voice question to a query result! A mistake in recording, transcription, or
translation will lead to incorrect results. Before trusting the query result, be sure to
check the additional output to verify that the system did not make any mistakes.

TIP If your voice interface only produces nonsense, check the recordings in
question.wav. If you don’t hear anything, make sure your application has access
to your microphone. By default, applications typically have no access to the
microphone (making it harder to spy on you with malicious software). You
need to update your security settings to enable access.

Speech-to-speech translation

The Banana branch in Paris has started looking into language models and potential
applications for data science tasks. You have grown your reputation as the local expert
on the topic, and your manager asks you to advise the French team on how to get
started. There is just one tiny problem: you don’t speak any French. On hearing that
Banana Paris conducts most staff meetings in French, you are about to decline the
assignment. But after thinking about it, you realize that this may not be a dealbreaker
after all. Although you don’t speak any French, GPT-4o certainly does! Would it be
possible to use language models to translate for you?

You can indeed use language models to translate between various languages. In
this section, we will create a translator tool that takes spoken input in a first language
and produces spoken output in a second language. Because the tool produces spoken
output, you don’t even need to learn the French pronunciation. Simply speak English
and wait for the tool to produce a spoken translation. That way, you can collaborate
with your French colleagues while simultaneously demonstrating the capabilities of
state-of-the-art language models!

Overview

Our translator tool processes spoken input. As before, we will use OpenAI’s Whisper
model to transcribe input speech to text. Then, we will use the GPT-40 model to
translate the text to a different language. For our example scenarios, we use French
as the target language. However, due to the amazing flexibility of models like GPT-4o,
our tool won’t be restricted to that! Our tool will enable users to specify the target

7.4.2

7.4 Speech-to-speech translation 133

language as input, to be used as a text snippet in the prompt instructing the language
model for the translation.

After generating a text translation, we still want to generate a spoken version. It
turns out that we can use yet another OpenAl model to transform text into spoken
output in various languages. Figure 7.2 shows the complete processing pipeline,
starting with spoken input in a first language and ending with spoken output in a
second.

Spoken input (language 1)

[Speech transcription]

Transcript (language 1)

(Translate text]

Translation (language 2)

[Speech generator]

Spoken output (language 2)

Figure 7.2 Our translator tool records spoken input in a first language, transcribes input to text, trans-
lates that text into a second language, and finally generates spoken output.

Generating speech

The pipeline in figure 7.2 requires several transformations. We already saw how to
transcribe spoken input to text in the previous sections. Translating text via language
models is relatively straightforward (ask GPT-40 to translate from one language to
another, and it will do so). We are still missing a way to transform written text (e.g.,
in French) into spoken output. We discuss how to do that next.

OpenAl (as well as other providers) offers several text-to-speech (TTS) models.
Such models take written text as input and produce a spoken version as output. The
following piece of code generates speech for a text string (stored in the variable
speech text):
import openai
client = openai.OpenAI ()
response = client.audio.speech.create(

model='tts-1', voice='alloy',
input=speech text)

134

7.4.3

CHAPTER 7 Analyzing audio data

We’re using a new endpoint in this instance (audio.speech) and configuring the
create method using three parameters:

model—The name of the model used to generate spoken output. We use
OpenAl’s tts-1 text-to-speech model.

input—We generate spoken output for this text. Submit text in any of the various
languages supported by the model (https://github.com/openai/whisper).
voice—We can choose between different voices for speech. Here, we use alloy.

That’s all we need to generate speech output via OpenAll We already know how to
transcribe speech and how to translate text between different languages, so we now
have all we need to code our translator tool.

What about pricing?

At the time of writing, OpenAl charges 1.5 cents per 1,000 tokens for text genera-
tion using the TTS model and twice that for the high-quality version (TTS HD). These
prices are likely to change over time, so be sure to look at OpenAl’s pricing website
(https://openai.com/pricing) for updated information.

End-to-end code

Listing 7.3 shows the complete code for our translator tool. Let’s start by discussing
the libraries it imports (@). Besides the openai and argparse libraries included in
each project so far, we import sounddevice and scipy to record and store audio
files, along with the time library to limit recording time.

Listing 7.3 Translating spoken input into a different language

import argparse @ Imports libraries
import openai

import playsound

import requests

import scipy.io.wavfile

import sounddevice

import time

client = openai.OpenAI()

def record (output_ path) : @ Records audio
nnm Record audio and store in .wav file.

Args:
output_path: store audio recording there.
W
sample rate = 44100
nr frames = 5 * sample_rate
recording = sounddevice.rec(

https://github.com/openai/whisper
https://openai.com/pricing

7.4 Speech-to-speech translation 135

nr frames, samplerate=sample rate, channels=1)
sounddevice.wait ()
scipy.io.wavfile.write (output_path, sample rate, recording)

def transcribe (audio path) : © Transcribes audio
"mrn Transcribe audio file to text.

Args:
audio_path: path to audio file.

Returns:
transcribed text.
W
with open(audio path, 'rb') as audio file:
transcription = client.audio.transcriptions.create(
file=audio file, model='whisper-1')
return transcription.text

O Generates a prompt for translation

def create prompt (to_translate, to_ language) :
"n v Generate prompt to translate text to target language.

Args:
to_translate: translate this text.
to_language: translate text to this language.

Returns:
Translated text.
W
parts = []
parts += [f'Translate this text to {to language}:']
parts += [to_translate]
parts += ['Translated text:']
return '\n'.join(parts)

def call_llm(prompt) : © Uses the language model
"r v Query large language model and return answer.

Args:
prompt: input prompt for language model.

Returns:
Answer by language model.
W
for nr retries in range(1l, 4):
try:
response = client.chat.completions.create (
model="'gpt-40"',
messages=[
{'role':'user', 'content':prompt}

]

136

CHAPTER 7 Analyzing audio data

return response.choices[0] .message.content
except:
time.sleep(nr retries * 2)
raise Exception('Cannot query OpenAI model!')

def generate speech(speech text): @ Generates speech
"mn Generates speech for given text.

Args:
speech text: generate speech for this text.

Returns:
query result.

W

response = client.audio.speech.create(
model='tts-1', voice='alloy',
input=speech text)

return response.content

if name == ' main_ ': @ Translates speech to speech

parser = argparse.ArgumentParser ()
parser.add_argument ('tolanguage', type=str, help='Target language')
args = parser.parse_args()

while True: @ Main loop

user input = input ('Press enter to record (type quit to quit).')
if user input == 'quit':

break
audio path = 'to translate.wav' © Transcribes the input

record (audio_path)
to_translate = transcribe(audio path)
print (f'Original text: {to_translate}')

(@ Translates to the target language

prompt = create prompt (to translate, args.tolanguage)
translated = call llm(prompt)

print (f'Translated text: {translated}')

speech = generate speech(translated) @ Generates speech output
with open('translation.mp3', 'wb') as file:
file.write (speech)

playsound.playsound('translation.mp3') (® Plays the generated speech

The playsound library is used to play audio files generated by OpenAl’s models.
Because we generate speech via OpenAl’s HTTP interface, we import the requests
library to create HTTP requests. Next, we will discuss the functions used in listing 7.3.

As in the previous project, we record audio data from the microphone. The record
function (@) records 5 seconds of audio input and stores it into a .wav file on disk.
The transcribe function (@) transcribes that audio input to text. Both functions
have been discussed in more detail in the prior projects in this chapter.

7.4.4

7.4 Speech-to-speech translation 137

The create_prompt function (@) generates a prompt for translation. As in prior
projects, the prompt contains a task description, together with all relevant input data.
In this case, we want to translate from the initial language (English) to the target
language (French). Note that the target language is specified as an input parameter
(to_language). This input parameter corresponds to a text snippet describing the
desired output language. In the simplest case, this can be the name of a language (e.g.,
“French”). On the other hand, users can request a specific dialect (e.g., “German
with Swabian dialect”) or style (e.g., “English in the style of Shakespeare”). The
target language is integrated into the task description that appears in the prompt
along with the text to translate.

Note that we do not need to specify the input language. We assume that the
language model is able to recognize the language of the input text (otherwise, we
cannot expect the model to translate either).

After invoking the call_11lm function (@) with the prompt, we should obtain
translated text. The generate_speech function (@) generates the corresponding
speech using the approach we discussed in the previous section.

The translator application (@) expects as input a text describing the target langu-
age. This parameter is a string that can contain arbitrary text. It simply replaces a
placeholder in the prompt used for translation. In the main loop (@), users press
Enter to speak or enter quit to terminate the application.

When recording user input, we first store 5 seconds of audio recording in a file
named to_translate.wav before transcribing the input via the transcribe function
(@). After that, we use GPT-4o to translate the input to the target language ({®) and
then generate speech from the translation (@). We store the generated speech as an
.mp3 file on disk (this means we can easily hear the last output again) and, finally,
use the playsound library to—you guessed it—play the generated sound file.

Trying it out

Time to try our translator! You can find the code on the companion website as
listing 3 in the chapter 7 section. Download the code, and switch to the contain-
ing folder in the terminal. We can choose our target language for translation. Of
course, the quality of the translation and sound output may vary, depending on
that choice. In particular, the model we use for transcription, as well as the model
we use for speech generation, support a set of about 60 common languages. Trans-
cribing audio input or generating audio output in less common languages may
fail. Look online to see the current list of supported languages for transcription
(https://help.openai.com/en/articles/7031512-whisper-api-taq) as well as speech
generation (https://platform.openai.com/docs/guides/text-to-speech). For now,
consistent with our scenario at the beginning of this section, we will go with French
as the target language. In the terminal, enter the following command to start our
translator:

python listing3.py "French"

https://help.openai.com/en/articles/7031512-whisper-api-faq
https://platform.openai.com/docs/guides/text-to-speech

138

CHAPTER 7 Analyzing audio data

Strictly speaking, the quotes around the word “French” are unnecessary. However,
as we can enter multiword descriptions of the desired target language, we will need
quotes in the following examples to avoid errors if the console misinterprets our
input as values for multiple parameters.

As in our previous project, we need to give our application access to the micro-
phone. Click Yes if you are asked for microphone access; if not, be sure the security
settings allow it. The following is an extract from a conversation with our translator
tool:

Press enter to record (type quit to quit).
Original text: Hello my colleagues in Paris.
Translated text: Bonjour mes collégues a Paris.
Press enter to record (type quit to quit).
Original text: Let me teach you something
about language models.

Translated text: Laisse-moi t'apprendre

quelque chose & propos des modéles de langage.

You see transcribed input and the generated translation. You should also hear the
spoken version of the translation (if not, check your settings for audio output). Not
bad for a few lines of Python code!

Translating to French seems like a reasonable use case for our translator tool.
However, it may not be the one with the highest “fun factor.” Let’s try something
different to show the flexibility of language models: let’s see if we can “translate”
our audio input to a highly polished version. In the terminal, enter the following
instructions:

python listing3.py "English in the style of Shakespeare™"

This is what we get when translating our simple greeting into a much more refined
version (perhaps a nice intro to a course on language models for our U.S. colleagues
at Banana):

Press enter to record (type quit to quit).

Original text: Hello, my dear colleagues.

Translated text: Hark, my fair allies, I bid thee well met!
Press enter to record (type quit to quit).

Original text: Let me teach you

something about language models.

Translated text: Pray, lend me thine ear

as I shalt educate thee on language models.

Try a few more target languages! The possibilities are (almost) unlimited.

Summary 139

Summary
OpenAl’s Whisper model transcribes speech input to text.
Access transcription via the audio transcriptions endpoint.
Pricing for transcription is based on the number of minutes.
OpenAl offers several models for generating speech from text.
You can choose the voice and quality for generated speech.
Speech generation pricing depends on the number of tokens.

Part 3

Advanced topics

This part of the book will help you write applications with language models that
are more effective and cost-efficient.

Chapter 8 broadens our scope from OpenAl’s language models to other providers.
Before applying language models to large data sets, it is crucial to compare models
offered by different providers. That way, you get the optimal tradeoff between cost
and quality for your specific scenario. The chapter discusses some of the most popular
providers, their models, and the libraries they offer.

Chapter 9 demonstrates techniques for cost optimization in an example scenario. It
covers topics such as prompt engineering, the optimal tuning of model configuration
parameters, and fine-tuning, a process by which a language model is specialized for
one specific task. As shown in this chapter, using those methods can yield significant
improvements in terms of quality and cost.

Chapter 10 discusses two software frameworks that have become very popular
for developing complex applications on top of language models: LangChain and
Llamalndex. Both can be useful for data analysis. In particular, the chapter shows
how to use those frameworks to build agents, an approach that enables language
models to solve complex data analysis tasks using a variety of computational tools.

GP1 alternatives

This chapter covers

Claude, from Anthropic
Command R+, from Cohere
Bard, from Google

Hugging Face’s models

Time to meet some of GPT’s “friends”! So far, we have been focusing on GPT and
other OpenAl models. But OpenAl is not the only game in town. Quite the contrary:
we are currently witnessing a “Cambrian explosion” of language models, with new
models popping up every week. Before using language models in production, you
want to make sure you’re using the best model for your task. In this chapter, we’ll
look at many of the OpenAl alternatives out there and discuss the pros and cons of
different models as well as how to use them.

Almost all language models nowadays are based on a similar architecture (the
Transformer architecture). However, models from different providers may differ in
the way they are trained, the way they represent text, or the way in which they are
offered and priced. All those factors can make a difference in terms of processing
fees and output quality for your specific task. Models like GPT-40 are powerful and
solve almost any task. But this generality comes at a cost: if a small, specialized model
is available, trained for just the task you’re interested in, using such a model may very
well be the optimal choice.

142

8.1

8.1 Anthropic 143

You will notice throughout the following sections that many of the models we
discuss can be accessed via interfaces that are similar to OpenAl’s interface. That’s
good news for you: no need to get into a novel and complex framework each time
you want to try a different model! And with that, let’s start our exploration of GPT
alternatives.

Why isn’t my favorite model listed?

If your favorite model or model provider is not listed in this chapter, don’t panic! With
the growing number of providers and models, it has become impossible to give a
full overview of available models. If a model is not included here, it does not mean
it can’t be the best alternative for your task. The interfaces of different providers
tend to be similar, so you should still be able to use what you have learned so far to
employ other models without much trouble. Also, note that we list model providers
in alphabetical order in this chapter. Don’t infer any priority from that (we're not
discussing the best providers first).

Anthropic

Many of the stories by Isaac Asimov, one of the most prolific science-fiction authors
of all time, center on the “three laws of robotics” and their interpretation:

A robot may not injure a human being or, through inaction, allow a human
being to come to harm.

A robot must obey orders given to it by human beings except where such orders
would conflict with the First Law.

A robot must protect its own existence as long as such protection does not
conflict with the First or Second Law.

The goal here is to have a concise set of guidelines that makes sure robots are helpful
and harmless. Whether the previously mentioned laws provided any inspiration, this
idea connects to the language models produced by Anthropic, yet another provider
of large-scale language models.

Anthropic, founded in 2021 (by several former OpenAl members), has repeate-
dly touted the idea of “Constitutional AI” [1] as one of the distinguishing factors,
compared to other models. In a nutshell, this means that when training models to
provide users with accurate and inoffensive answers, we rely on a small set of rules—a
“constitution,” so to speak—to judge the quality of answers. Instead of relying on
human testers to label answers generated by the model during training, we employ
a second Al, charged with evaluating the answers of the former according to the
constitution.

At the time of writing, Claude 3.5 (a reference to the amazing Claude Shannon)
is the latest model released by Anthropic. In this section, we will try Claude via (you
guessed it) a web interface and a Python library.

144

8.1.1

8.1.2

CHAPTER 8 GPT alternatives

Chatting with Claude

We will have a quick chat with Claude (currently in version 3.5) to get a sense of its
capabilities. First, go to the Anthropic website at www.anthropic.com, and click the
Talk to Claude button.

Unless you have created an Anthropic account before, you will be asked to provide
an email address and a phone number. After verifying your data, you should see
Claude’s chat interface, shown in figure 8.1.

Input text Start chat

P
¥ Claude @

Good morning, Immanuel

Whaot can | helo you with? ol Shart Criat B

Mewin Clavde

Understand and work with images

ki ook e

— i ans
i
VN — G

Convert Ul design to Transeribe handwritten Extract text from
front-end cade notes images
Previzus shats from 5 months ags
= Hello Claude!

Untitled

Lastyear

Teleo schema column uniguensss for ACTIVATION_DATE and UMIQUE_....

ANTHROFAC

Figure 8.1 Web interface for Anthropic’s chatbot Claude

The interface is pretty intuitive: simply enter text in the corresponding field, and
click the button on the right to start chatting! Begin with a friendly greeting, chat
about the weather, or try using Claude to solve some of the tasks from chapter 2 (e.g.,
classifying reviews by sentiment or translating questions to SQL queries).

Python library

Assuming you have created an account with Anthropic, you can create keys at the
following URL: https://console.anthropic.com/settings/keys. Be sure to copy your
access key after creating it (as you will not be able to access it again afterward)!

www.anthropic.com
https://console.anthropic.com/settings/keys

8.1 Anthropic 145

After obtaining your access key, go to the terminal and run the following command:

pip install anthropic==0.28

This will install the Anthropic Python library. If you are familiar with OpenAI’s
Python library (and chances are that, after reading the previous chapters, you are),
you should get used to the Anthropic library very quickly.

For instance, the following listing shows Python code for answering questions
using Claude. Of course, this code does not do anything that you cannot do via the
web interface. The purpose is just to show how easy it is to use Claude via the Python
interface.

import argparse
from anthropic import Anthropic

if name_ == '_main_ ':

parser = argparse.ArgumentParser () © Defines parameters
parser.add_argument ('ai_key', type=str, help='Anthropic access key')
parser.add argument ('question', type=str, help='A question for Claude')
args = parser.parse_args()

anthropic = Anthropic(api_key=args.ai key) @ Configures Anthropic

completion = anthropic.messages.create(© Uses Claude for completion
model="'claude-3-5-sonnet-20241022",
max_tokens=100,
messages=[

'role':'user',
'content':args.question

j3D)

print (completion.content) O Prints the completion result

As input parameters (@), we use the Anthropic access key and a question we would
like answered. Similar to OpenAlI’s libraries, we configure access using the access key
(@) . After that, we can construct prompts for completion by Claude (@).

Using Anthropic’s anthropic.messages endpoint, we specify the ID of the model
touse (claude-3-5-sonnet-20241022 is the newest model by Anthropic at the time of
writing) and the maximum number of tokens for completion (using the max_tokens
parameter). Similar to OpenAlI’s chat models, Claude is designed for chats between
users and the model. Therefore, the input to Claude is a list of messages (containing
only a single element in this specific scenario). We obtain the result of Claude’s
prompt completion in the content field (which we print (@)).

You can find this listing as the Anthropic item on the companion website. To
execute it, open your terminal, and switch to the containing folder. Then, execute
the following command:

python anthropic claude.py ... "What is constitutional AI?"

146

8.2

8.2.1

CHAPTER 8 GPT alternatives

Replace the three dots with your Anthropic access key. When executing the program,
you should see an answer to your question, generated by Anthropic’s model.

Cohere

We briefly discussed hallucinations in chapter 2. Essentially, a hallucination occurs
when language models make stuff up because they don’t have access to data that is
relevant to the task at hand. The Canadian startup Cohere puts a particular emphasis
on avoiding such hallucinations using a method called grounding. Grounding the
answer of a language model means linking it to real data, thereby reducing the
chances of “creative output” not based in reality.

Cohere supports a wide range of connectors, enabling its models to access exter-
nal data. For instance, web search is supported, as well access to various databases.
Internally, Cohere accesses those data sources and provides the language model with
information tailored to the request. But even better, Cohere shows you all the data
sources used to generate your answer. If you are the suspicious type (and when it
comes to answers from language models, you generally should be), you can follow
up on references and validate that they support the generated answer.

Let’s see how all that works in practice. Time to chat with Cohere’s Command R+
model!

Chatting with Command R+

At the time of writing, Command R+ is one of Cohere’s latest models. As usual, you
can try it via web interface and use it via Python when processing large amounts of
data. First, we’ll try the web interface. For that, go to https://cohere.com/, and click
Try Now. After signing up for an account, click Playground. You should see the web
interface in figure 8.2.

® cohezeplaygiourd AT MEREGAES PLNARRLAR TERR RARLNTTS &

] >

W oAFTeostoolldsr % Gl % Sl vicw w0 da

i
i
-
E
]

PUSTIALIT: G & b o b ncad

Gart azzh stz s suerenl ~rosl sendticn b s sarels Hakrar Eunaieions il s o low s mukorts

Somrmarics vz i alil i B Sz dech e Shew it

\

Enter a prompt here.

50 Heddn

sz

Retvmecad Pazsmatass

/

Click here to generate an answer.

Web connector

Figure 8.2 Web interface for chatting with Cohere’s language model Command R+

https://cohere.com/

8.2.2

8.2 Cohere 147

Figure 8.2 shows where to enter your prompt and the button to generate an answer.
What about the window on the right (containing the Web Connector button)? This
is where you specify connectors to use when generating your replies. A connector
enables Cohere to access external data sources. We can activate (or deactivate) the
web connector by toggling the corresponding button. This connector enables Cohere
to query the web, similar to what all of us would do when trying to answer a hard
question that involves factual knowledge. Give it a try, and see how the replies to
factual questions change if the web connector is activated or deactivated!

What is RAG?

You may have noticed that Cohere’s website prominently advertises RAG, but what
is that? RAG stands for Retrieval Augmented Generation. It means that when gene-
rating an answer, we augment the input used by the language model with data we
retrieve from an external source.

Python library

Cohere offers a Python library similar to the ones we have seen in previous sections.
Enter the following command in the terminal to install the required library:

pip install cohere==4.43

Listing 8.2 (available as the Cohere item on the website) contains code for a simple
question-answering interface. Users enter their access key and a question on the
command line. Visit https://dashboard.cohere.com/api-keys to get your access key. In
listing 8.2, after configuring the Cohere library with the access key (@), we generate
an answer using the Cohere library (@). Note the reference to connectors in the
call to the chat function! Here, we specify a list of connectors, enabling Cohere’s
model to access data from external sources. Connectors are specified as a list (i.e.,
we can enable access not to just one but to a multitude of connectors). Here we use
the connector with ID web-search (that’s the same web search connector we used
over the web interface in the previous section).

Finally (@), we print the answer generated by the model and a list of the web
sources consulted to generate the answer (along with the queries issued to retrieve
those documents). That enables us to verify that the generated answer is indeed
implied by the source material.

import argparse
import cohere

if _ name__ == '_main__ ':

parser = argparse.ArgumentParser ()

https://dashboard.cohere.com/api-keys

148

CHAPTER 8 GPT alternatives

parser.add_argument ('ai_key', type=str, help='Cohere access key')
parser.add argument ('question', type=str, help='Answer this question')
args = parser.parse_args()

client = cohere.Client (args.ai key) @ Configures access

@ Generates an answer using Cohere
prompt = f'Answer this gquestion: {args.question}'
result = client.chat (prompt, connectors=[{'id': 'web-search'}])

© Prints answer and citations

print (£'Answer: result.text')

print (f'Web searches: result.search results')
print (£'Web results: result.documents')

Let’s try it! Switch to the folder containing the code, and run the following command
in the terminal (replace the three dots with your Cohere access key):

python coherega.py ... "Where was Steve Jobs born?"

You will get an answer similar to the following (which is slightly abbreviated):

@ Generated answer

Answer: Steven Paul Jobs was born in San Francisco, California, United States.
His birth name was later changed to Steve Jobs after

he was adopted by Paul and Clara Jobs.

Jobs was born to Abdulfattah Jandali and Joanne Schieble on 24th February, 1955.
After being put up for adoption, Jobs was adopted by Paul and Clara Jobs,
a lower-middle-class couple.

Web searches: [@ Web search queries
{'search query':

{'text': 'Where was Steve Jobs born',
'generation id': '...'},

'document _ids': [
'web-search _1:0', 'web-search 3:1', 'web-search 4:0',
'web-search 5:0', 'web-search 9:1'],

'connector': {'id': 'web-search'}

1

Web results: [€ Web documents used
{rid': 'web-search 4:0', 'snippet': 'Short Biography of Steve Jobs

The story of Steve Jobs from cradle to grave - and beyond. Steven
Paul Jobs was born on February 24, 1955 in San Francisco, California.
', 'title': 'Short Bio | all about Steve Jobs.com',
'url': 'https://allaboutstevejobs.com/bio/short bio'},
.1

Let’s have a closer look. The initial part of the output (@) is the answer generated
by the model. The answer seems reasonable, but can we trust it? This is where the
remaining parts of the output come into play. The middle part (@) provides us
with information on the web used by Cohere to inform the generated answer. Those

8.3

8.3.1

8.3 Google 149

web queries are chosen automatically based on the input question. In this case, web
queries correspond precisely to the input question (this is not necessarily the case
for longer input text). At the end of the output (@), we find text snippets and the
URL:s of the documents retrieved via the prior queries. In this case, text snippets
taken from the web documents (e.g., “Steven Paul Jobs was born on February 24,
1955 in San Francisco, California”) make a good case supporting the answer from
the model.

Google

Google, a company that needs no introduction, has been deeply involved with lan-
guage models since the very beginning. In fact, the Transformer architecture [2]
used by virtually all language models was invented (primarily) by Google researchers.
No wonder Google is developing its own models. At the time of writing, Gemini is
one of Google’s most recent models, and we’ll try it in this section.

Chatting with Gemini

To try Gemini, go to https://gemini.google.com/. After signing up for an account,
you should see the interface depicted in figure 8.3.

& Ty Gerind Adkaced

Hello, Immanuel

Giva me ideas for vl
o do with what s in
this imape?

Evaluate s rank
Comman cares
catagories

Gitee e 1igs for P b etk g debate how
grow my YeuTube =houkd yau store
channel bread?

ki Q. @ 2

Humans feview some saved chats to improve Google Al Tz stog this for future chats, turn off Gemin Apps
Activty. f this seing is on, don't nter infa yau woalkdn't want revizaed ar used. How s 5

@ a,

®

(

Settings Enter a prompt here. Upload pictures

Figure 8.3 Web interface for chatting with Google’s Gemini model. Click Settings to activate
additional functionality.

Simply enter your text in the corresponding input field (labeled Enter prompt here
in figure 8.3), and press Enter to generate an answer. Gemini is not limited to text

https://gemini.google.com/

150

8.3.2

CHAPTER 8 GPT alternatives

input. Click the button on the right to upload pictures. In your chats with Gemini,
you can reference those pictures and ask questions about them.

One particularity of Gemini, distinguishing it from all the other models we have
discussed so far, is its integration with other Google tools. Click the Settings button
(marked in figure 8.3) and then the Extensions option. For instance, you can give
Gemini access to your emails by clicking the associated button. Ever had the problem
of finding information hidden in year-old emails in your inbox? Google’s Gemini
has the potential to help with that.

The Python library

Like other providers of language models, Google offers a Python library for model
access. You can install the library using the following code in the terminal:

pip install google-generativeai==0.7

Go to https://aistudio.google.com/app/apikey to get your access key for the Google
API. Follow the instructions, and copy the key after creating it. Listing 8.3 shows how
to use Gemini in Python to answer questions. The steps are similar to the previous
libraries. The input parameters (@) include the access key (alternatively, we can
store the key in an environment variable) as well as the question to answer. Next, we
configure the Google library with the access key (@). Now we can generate a model
and use it to answer questions via the generate_content method (@). Finally, we
print out the generated question (@).

import argparse
import google.generativeai as genai

if name == ' main_ ':

@ Defines the input parameters

parser = argparse.ArgumentParser ()

parser.add_argument ('api_key', type=str, help='Google API key')
parser.add argument ('question', type=str, help='Question to answer')
args = parser.parse_args()

@ Configures the APl with the access key

genai.configure (api key=args.api key)

© Generates an answer with Gemini
model = genai.GenerativeModel ('gemini-1.5-flash!')
reply = model.generate content (args.question)

QO Prints the answer
print (reply.text)

https://aistudio.google.com/app/apikey

8.4

8.4.1

8.4 Hugging Face 151

You can find the code on the book’s website using the Google link. In the termi-
nal, change to the directory containing the code. For instance, run the following
command to test Gemini (replace the three dots with your Google access key):

python google.py ... "What is the meaning of 1life?"

A full overview of Google’s library is beyond the scope of this book. However, knowing
the libraries of other providers of large language models, you should be able to
familiarize yourself quickly with this API as well.

Hugging Face

Providers like OpenAl invest millions of dollars to train models like GPT-40. The
result of all that expensive training is values for model parameters that make the
model perform best. After investing all that money, you would not necessarily want
to share the results of training freely, right? Hence, models like GPT-4o are typically
closed, meaning OpenAl does not share the parameter values that result from training
(note that OpenAl has shared other models, such as Whisper). Instead, OpenAl
processes prompts for you on its own infrastructure while charging you a processing
fee (that’s how we ultimately pay for all that expensive model training).

More and more, however, language model providers face competition from an
extremely lively open source sector. Universities, startup companies, and enthusiasts
all train their own models and often release the models (and their parameter values)
freely to the public. That enables you to run those models yourself, locally, on your
own dedicated infrastructure. For smaller models, a laptop with a GPU will often
suffice. For larger models, you may need to use a GPU cluster (or resort to cloud
providers that run those open source models for you). Besides potential financial
advantages (running models on your own infrastructure may be cheaper), other
considerations can make running models locally the only viable choice. For instance,
you may not want to trust external providers with particularly sensitive data. If you
don’t want to send your data, running locally is the only option.

Typically, open source models are significantly smaller than the models offered
by cloud providers. That makes sense because after all, who has a few million dollars
lying around to train a model? However, due to the sheer number of models available,
it is often possible to find an open source model that is specialized in solving just
the task you’re interested in. For instance, the Hugging Face Transformers platform
features over 1,000,000 Transformer models at the time of writing! Whatever task
you are facing, chances are that you may find just the right model. In this section, we
will look at the Hugging Face platform and see how to use its models locally.

Web platform

Go to https://huggingface.co/. Hugging Face Transformers offers various resources
around Transformer models. That includes not only the models but also data sets

https://huggingface.co/

152 CHAPTER 8 GPT alternatives

you can use to train your own models as well as cloud offerings that let you run open
source models on Hugging Face’s cloud infrastructure.

For the moment, we are interested in models. Click the Models button to see the
list of models shown in figure 8.4.

Task filters Model list
= Hugging Face Morals Dasasnts Saaces\ & Fosts Does 7 Enwerprise Fridng o= Lagla @
€D 1vanos Camsar | Liegags Loews Madels 119150 Vit fng s Fulltesteesc 1L Surt Trending
Othes

= meta-1lana/Llama-3.3-T0B-Instruct
Mudsiimdal

o sudiotento-tar % Image-fente-loe N nesaczg/benchnai wi
dated 7 daye 2 1
1 Visuz Question Aswenng

% Document Question Ansenng. B scncant ayanies
[Wideo-Textto Tast Ary-to by Test-tadan I} & iliys

Copuler Vi
g black-Torest-Labs/TLUE. L-dev
UepthFstmsian & ensge Cssification e | Wpdatad v

Object Peteczion nze Sagmentation

Iontimege 1% magete-imt o8 Qwan /Qu-320-Praviey

5 Imagetolmags % Imagstmvides

£1. 2Unanditionetimags Genemtion tishaudio/fish-speech-1.5

3 vkeoChsifictior W Tedtovide s s Uidited Hdiyr agn
Zan ShetImags Classilicaticr

: & Daloull1Lshou_xin

T WaskGanaatian P

© Oibject Derectien Tesrte-an

[dirape Featur = daapsaak-ai/DespSesk-v2, 5-1218

Havural Language Frccessing & Jez:

8/TRELLIS-inage-large

& TewCassficzton 35 Token Classication

Al Table Question ansusring

Figure 8.4 Overview of Hugging Face Transformer models. Click the Tasks filters to narrow
the selec-tion. Click models in the Models list to see details.

We’re seeing a list of over 1 million Transformer models (and, as the number of
models is growing daily, you will probably see even more)! Whew. That’s a few too
many. Let’s narrow them down. On the left side of the screen are various filter options
to get the list down to the models you really care about. For instance, we can filter
by the type of task we need the model to do. This includes text classification (e.g.,
classifying reviews by sentiment), visual question answering (e.g., does the picture
show an apple?), and speech-to-text transcription (e.g., transcribing voice queries to
text). For almost all the tasks we have discussed in this book, you may be able to find
a specialized model. Click any of the standard tasks to see only the models that solve
that task.

When you click one of the remaining models, you will see a detailed model
description such as that shown in figure 8.5 for the BLIP model from Salesforce,
a model that processes images to generate suitable captions. On the left side is a
thorough description of the model along with links to relevant papers and code
samples showing you how to use the model on different hardware platforms (i.e.,

8.4.2

8.4 Hugging Face 153

locally). On the right side is an interface that allows you to try the model on a few
sample pictures.

¥ Hugging Face th models, datasets, user + Models Datasets Spaces @ Posts Docs Pricing = Leglh
= falesforce blip-image-captioning-lazge 0 i o
% mageaTed & Tanshemers O Fyarch % Tensorlom £ Safeiensors bllp beddtetgeeenation (mage ciptioning @ Infoeence Sncpeints 142201 13085,
1 L
+ Model card Files antt versions % Communizy B i & Tan +f Dpgiey - o Useln Translamers.

& Edtmodel cane

BLIP: ing L L -Image P ining for Unified Vision- ;.:IJ&;,}SI.') st ity ‘Ak__,_w\

Language Understanding and Generation

Midel card b image caplioning pretrained on COCO dataset - base architecture (wilh & safetencars (0 oddl e 47N parems - Tunsorqpa WA-FZ 7
WiT large backbane).

¢ Inference AP1

% rage o Tese

Diag i

| | serameenion ||
(L x]

B Spacas using Salasfarceh1in- Inaga-captianiag-Targe

Pull figurs frans ELIF officlal raps

Model description Trying it out

Figure 8.5 Detailed description of Salesforce’s BLIP model (https://huggingface.co/Salesforce/blip
-image-captioning-large). Read the description on the left, or try the model via the interface on the right.

Python library

We are now about to run Transformer models on our own local infrastructure! The
performance you get will, of course, depend on the properties of the hardware you’re
using. However, even with moderate computation power, you should be able to
work with the models we’re about to try. But first, we must install the Hugging Face
Transformers library. Enter the following commands in your terminal:

pip install transformers==4.36

The Transformers library is based on PyTorch, a popular machine-learning frame-
work. If you haven’t installed PyTorch yet, run the following command in your
terminal (otherwise, you will receive an error message when trying to run the following
code):

pip install torch==2.1.2
That’s it for the setup! We’re ready to use the Hugging Face Transformers library,

which we import via import transformers. The Transformers library offers a ple-
thora of features and various ways to use the model in its repository (or to train your

https://huggingface.co/Salesforce/blip-image-captioning-large
https://huggingface.co/Salesforce/blip-image-captioning-large

154

CHAPTER 8 GPT alternatives

own models, for that matter). In this section, we’ll only cover a small subset of them,
but it’s enough to get a first impression.

Let’s assume that you have found a model in the Hugging Face model repository
that you would like to try. To make things more concrete, let’s say we’re talking about
the Roberta model for sentiment classification, offered by Cardiff University (you
can find that model at https://mng.bz/rKoX). Compared to GPT-40 and most other
models discussed in this section, this is a fairly small model. However, it is specialized
for analyzing text to determine the underlying sentiment. Although it is much less
generic than GPT-4o0 and similar models, it does one task and does it fairly well. If
you are looking to classify reviews, for instance, you may find this model very suitable.

The easiest way to use a model via the Transformers library is via a pipeline.
The following command creates a pipeline for sentiment classification based on the
Roberta model:

sentiment pipeline = transformers.pipeline (
model="'cardiffnlp/twitter-roberta-base-sentiment-latest')

As you see, we specify the model using the last part of its URL: the name of the
account providing the model (cardiffnlp) followed by the ID of the model itself.
When using this code for the first time, the Transformers library will automatically
download the model from its public model repository. Note that this code works in
part because the model we are referring to is associated with a specific task class. For
other models, you may have to specify the types of tasks you want them to solve as a
separate input parameter.

We created a pipeline! Now we can use it to classify text—for example, like so
(we assume that the variable text_to_classify contains, you guessed it, the text to

classify):

result = sentiment_pipeline(text_to_classify)

We have all we need to build a simple application that classifies reviews (based on
whether the underlying sentiment is positive, meaning a good review, or negative,
meaning the review is bad). The next listing shows the corresponding code (you can
find it as the Hugging Face item on the book’s website).

import argparse
import transformers
if _name_ == '_main_':

parser = argparse.ArgumentParser ()
parser.add_argument ('review', type=str, help='Text of a review')
args = parser.parse_args()

sentiment pipeline = transformers.pipeline (© Creates a pipeline

https://mng.bz/rKoX

Summary 155

model='cardiffnlp/twitter-roberta-base-sentiment-latest')
result = sentiment_pipeline (args.review) @ Applies the pipeline to input
print (result) © Prints out the classification result

You may notice a difference from all the code we have seen previously: we don’t need
to specify an access key! Because the Hugging Face models are publicly available and
we’re running them on our own infrastructure, there is no need to provide any kind
of credentials. Instead, the only input is a review text that we want to classify.

The code composes the snippets discussed earlier. It creates a pipeline (@), uses
it to classify the input text (@), and finally prints out the result (@). You can try it by
switching to the containing folder in your terminal and entering, for instance, the
following:

python huggingface.py "This movie was really awfull!"

When running the code for the first time, you may have to wait for a few minutes
while the Transformers library downloads the model you are referencing. But no
worries: the library caches the downloaded model so you won’t have to wait when
you run the code a second time. After processing finishes, you should see output like
this:

['label': 'negative', 'score': 0.9412825107574463]

That'’s certainly correct for the sample input: the review is concise and 100% negative.
Try it with a few different reviews, and compare the output to what you get with
models like GPT-4o. In the majority of cases, the classification result should be fairly
similar. Of course, GPT-40 is a much more generic model and can be used to solve a
variety of other tasks as well. But as long as you’re interested in classifying reviews,
this model offers an interesting tradeoff between quality and cost.

Summary

In addition to OpenAl, several other providers offer large language models.
Most providers offer closed-source models via a cloud API. The models differ
based on their generality, output quality, and pricing.

Most providers offer a Python library to access language models.

Hugging Face Transformers offers various models for free download.

References
[1] Bai, Y., Kadavath, S., Kundu, S., et al. (2022). Constitutional AI: Harmlessness
from Al Feedback. CoRR abs/2212.0, 1-32.

[2] Vaswani, A., Shazeer, N., Parmar, N., et al. (2017). Attention is All You Need. In
Advances in Neural Information Processing Systems, pp. 5999-6009.

Optimizing cost and quality

This chapter covers

Model choice and tuning
Prompt engineering
Fine-tuning models

Analyzing data with large language models is a great way to burn money quickly. If
you’ve been using GPT-4 (or a similarly large model) for a while, you’ve probably
noticed how fees pile up quickly, forcing you to recharge your account regularly. But
do we always need to use the largest (and most expensive) model? Can’t we make
smaller models perform almost as well? How can we get the most bang for our buck?

This chapter is about saving money when using language models on large data
sets. Fortunately, we have quite a few options for doing so. First, we have lots of
choices when it comes to large language models. Selecting a model that is as small
(or, rather, as cheap) as possible while still performing well on our analysis task can
go a long way toward balancing our budget. Second, models typically have various
tuning parameters, allowing us to tune everything from the overall text generation
strategy to the way specific tokens are (de-)prioritized. We want to optimize our
settings there to turn small models into GPT-4 alternatives for certain tasks. Third,
we can use prompt engineering to tweak the way we ask the model our questions,
sometimes leading to surprisingly different results!

156

9.1

9.1 Example scenario 157

And finally, if none of these methods cut it, we can choose to create our own
models, highly customized for only the task we care about. Of course, assuming we
don’t want to spend millions on pretraining, we won’t start training new models from
scratch. Instead, we will typically choose to fine-tune existing models with just a few
hundred samples. That’s often enough to get significantly better performance than
when using the base model.

Of course, what works best depends on the task we’re trying to solve, as well as
on data properties. Fortunately, if we want to analyze large amounts of data, we can
afford to spend a little money on trying different tuning options on a data sample.
Chances are, this upfront investment will pay off once we analyze the entire data set!
Throughout this chapter, we will apply all of these tuning options in an example
scenario.

Example scenario

You’re back at Banana and trying to classify user reviews. Users can leave free-form
text reviews about their experiences with Banana products on the Banana website.
You want to know whether those reviews are positive (i.e., the user was happy with
the product) or negative (i.e., reading them will scare away potential customers!).
Of course, you can use language models for that task (you saw that in chapter 4). For
instance, you can use GPT-4 (at the time of writing, this is OpenAl’s largest model
for text processing). Provide GPT-4 with a review, together with instructions for how
to classify it (including a description of possible class labels, such as “positive” and
“negative”), and the output should be correct for most reviews.

However, analyzing data with GPT-4 costs about 6 cents per 1,000 tokens. That (6
cents) may not sound like much, but Banana receives thousands of product reviews
every day! Let’s assume the average review contains about 100 tokens (about 400
characters). Furthermore, let’s assume that Banana receives about 10,000 reviews
per day. That means you collect 100 x 10,000 tokens per day: about 1 million tokens
per day and 365 million tokens per year. How much does it cost to analyze one year’s
worth of comments? About 365,000,000 X % = 21,900 dollars.

That may put a bit of a dent in your budget! Can’t you get it cheaper? For example,
at the time of writing, GPT-3.5 Turbo is priced at only around 0.0005 dollars per
thousand tokens (tokens are priced differently depending on whether they are read
or generated, but we will neglect that for now to simplify the calculations). That means
only 365,000,000 x % = 182.5 dollars to analyze one year’s worth of comments.
Much better! But to get satisfactory output quality, you may have to do a little extra
work to ensure that you’re using the model in the best possible way.

TIP Instead of GPT-3.5 Turbo, you can also use alternative models such as
GPT-40 mini (the model ID is gpt-40-mini) in the following examples.

That’s what we will do in this example. Starting from the most naive implementation
of our classifier, we will gradually refine our implementation and try all the various
tuning options discussed in the introduction to this chapter!

158

9.2

CHAPTER 9 Optimizing cost and quality

Untuned classifier

Let’s begin with the base version of our classifier. Again, the goal is to take a review
and decide whether it should be classified as positive (pos) or negative (neg). We
will use the following prompt template to classify reviews:

[Review]

Is the sentiment positive or negative?
Answer ("pos"/"neg"):

In this prompt template, [Review] is a placeholder that gets replaced with the actual
review text. For example, after substitution, our prompt may look like this (the first
two lines correspond to an abbreviated version of the review to classify, apparently a
new movie streaming on Banana TV that doesn’t match the reviewer’s taste):

I am willing to tolerate almost anything in a Sci-Fi movie,

but this was almost intolerable.

Is the sentiment positive or negative?
Answer ("pos"/"neg"):

Ideally, if we send this prompt to a GPT model, we expect either pos or neg as the reply
(in this specific case, we expect neg). Listing 9.1 shows the complete Python code; we
won’t spend too much time discussing it because it is similar to the classifiers we saw
in chapter 4. The create_prompt function (@) instantiates the prompt template for
a specific review (stored in the input parameter text). The result is a prompt that we
can send to our language model using the call_11m function (@). We call GPT-3.5
Turbo here (@) (saving costs). We also set temperature to 0, which means we’re
minimizing randomness when generating output. This means you should see the
same results when running the code repeatedly. You may also notice that call_l1lmis
a little longer in listing 9.1 than the versions we have seen in previous listings. That’s
because we retrieve not only the answer generated by our language model but also
the number of tokens used (@). Counting the number of tokens will allow us to
calculate the invocation costs on a data sample.

import argparse
import openai
import pandas as pd
import time

client = openai.OpenAI ()
def create prompt (text) : © Generates prompts
"mn Create prompt for sentiment classification.

Args:
text: text to classify.

Returns:

9.2 Untuned classifier 159

Prompt for text classification.

monon
task = 'Is the sentiment positive or negative?'

answer format = 'Answer ("pos"/"neg")'
return f'{text}\n{task}\n{answer format}:'

def call llm(prompt) : @ Invokes the LLM
"mrno Query large language model and return answer.

Args:
prompt: input prompt for language model.

Returns:
Answer by language model and total number of tokens.
W
for nr_retries in range (1, 4):
try:
9 Generates an answer
response = client.chat.completions.create(
model="'gpt-3.5-turbo’,
messages=[
{'role':'user', 'content':prompt}
1,
temperature=0

)

O Extracts answer and token usage

answer = response.choices[0] .message.content
nr_tokens = response.usage.total tokens
return answer, nr_tokens

except Exception as e:
print (f 'Exception: {e}")
time.sleep(nr_retries * 2)

raise Exception('Cannot query OpenAI model!')

if name__ == '_main_ ':

parser = argparse.ArgumentParser () G’ Parses arguments
parser.add argument ('file path', type=str, help='Path to input file')

args = parser.parse_args()
df = pd.read csv(args.file path)

nr_correct = 0
nr_tokens = 0

for , row in df.iterrows(): (@ Iterates over reviews

text = rowl['text'] @ (Classifies the review
prompt = create prompt (text)
label, current tokens = call llm(prompt)

ground _truth = row['sentiment'] © Updates counters

160

9.3

CHAPTER 9 Optimizing cost and quality

if label == ground truth:
nr_correct += 1
nr_tokens += current_ tokens

print (f'Label: {label}; Ground truth: {ground truth}')

print (f'Number of correct labels:\t{nr correct}"')
print (f 'Number of tokens used :\t{nr_tokens}')

We will assume that reviews to classify are stored in a .csv file. We expect users to
specify the path of that .csv file as a command-line argument (@). After reading the
.csv file, we iterate over the reviews (@) in the order in which they appear in the
input file. For each review, we extract the associated text (@) (we assume it’s stored
in the text column), create a prompt for classification, and call the language model.
The result is the answer text generated by the language model (hopefully it’s one of
the two class labels, pos or neg), as well as the number of tokens used.

Our goal is to try different methods of querying a language model and compare
the output quality and costs. To judge the output quality, we assume that the input
.csv file contains not only the review text but also a ground-truth label. This means
we assume that each review has already been associated with the correct class label,
stored in the sentiment column (because our two class labels describe the sentiment
of the review). After receiving the language model’s output, we compare the output
to the ground truth (@) and update the number of correctly classified reviews
(variable nr_correct). At the same time, we sum up the total number of tokens used
(because processing fees are proportional to that) and store them in the counter
called nr_tokens. After iterating over all reviews, listing 9.1 prints out the final
number of correct classifications and the number of tokens used.

Model tuning

Let’s try it! You can find listing 9.1 under Untuned Classifier on the book’s website.
We reuse the movie reviews from chapter 4; search for the Reviews.csv link in the
chapter 4 section. The file contains 10 reviews, along with the corresponding ground
truth. Let’s assume that the code for listing 9.1 and the reviews are stored in the
same folder on disk. Open your terminal, switch to that folder, and run the following
command:

python basic classifier.py reviews.csv

You should see the following output:

Label: neg; Ground truth: neg
Label: neg; Ground truth: neg
Label: neg; Ground truth: neg
Label: neg; Ground truth: neg
Label: pos; Ground truth: pos
Label: pos; Ground truth: neg @ Incorrect label
Label: pos; Ground truth: neg

9.3 Model tuning 161

Label: negative; Ground truth: neg @ Nonexistent labe
Label: negative; Ground truth: pos

Label: neg; Ground truth: neg

Number of correct labels: 6

Number of tokens used : 2228

The first 10 lines describe the results for each review. We have the label generated
by the language model and then the ground-truth label (taken from the input file).
At the end, we have the number of correctly classified reviews and the number of
tokens used.

Out of 10 reviews, we classified 6 correctly. Well, at least that’s better than 50%, but
it’s still not a great result. What went wrong? Looking at output gives us some ideas.
There are cases (@) where the language model simply picks the wrong class label.
That’s not unexpected. However, there are also cases (@) where the language model
picks a class label that doesn’t even exist! Granted, it’s not too far off (negative
instead of neg), and that seems easy to fix.

We focus on the (probably) low-hanging fruit of making the language model
generate only one of our two possible class labels. How do we do that? Enter the
logit_bias parameter. The logit_bias parameter enables users to change the
likelihood that certain tokens are selected (we briefly discussed this and other GPT
parameters in chapter 3). In this specific case, we would like to significantly increase
the probability of the tokens associated with our two class labels (neg and pos). The
logit_bias parameter is specified as a Python dictionary, mapping token IDs to a
bias. A positive bias means we want to increase the probability that the language
model generates the corresponding token. A negative bias means we decrease the
probability of generating the associated token.

In this case, we want to increase the chances that GPT-3.5 selects one of the two
tokens representing class labels. So we want to select a high bias for those two token
IDs. Bias scores range from —100 to +100. We will go with the maximum and assign a
bias of +100 to the tokens representing class labels. First we need to find their token
IDs. Language models represent text as a sequence of token IDs. To change token
bias, we need to reference the IDs of the tokens we care about.

A tokenizer is the component that transforms text into token IDs. You can find
tokenizers for all GPT models at https://platform.openai.com/tokenizer. We’re
using GPT-3.5, so select the one labeled GPT 3.5 & GPT-4. Figure 9.1 shows the
tokenizer web interface.

We can enter text in the text box and click the Token IDs button to see the token
IDs for our input text. Using the tokenizer, we learn that the token pos has ID 981
and the token neg has token ID 29875. Now we’re ready to add a bias to our model
invocation as follows:
import openai

client = openai.OpenAI()

response = client.chat.completions.create (

https://platform.openai.com/tokenizer

162

CHAPTER 9 Optimizing cost and quality

model="'gpt-3.5-turbo',
messages= [
{'role':'user', 'content':prompt}
1,
logit_bias = {981:100, 29875:100}, @ Defines the bias
temperature=0

)

~
GPT-3.5&8 GPT-4 GPT-3(Legacy)
pos
Enter text [+ @
to tokenize. =
Clear Show example
Tokens Characters
[981]
Click to see
token IDs.
o J/

Figure 9.1 GPT tokenizer at https://platform.openai.com/tokenizer: enter text to learn the associated
token IDs.

Compared to the previous call (in listing 9.1), we add the logit bias (@) by mapping
the IDs of the two tokens we’re interested in (pos with token ID 981 and neg with
token ID 29875) to the highest possible bias value of 100. That should fix the problem
of generating tokens that do not correspond to class labels, right?

WARNING The code described next causes problems and results in long run-
ning times and significant monetary fees. Do not try it without integrating the
fix presented at the end of this section!

Let’s try it to be sure. You can add the logit bias to the code from listing 9.1.
Alternatively, later in this chapter, we will present a tunable version of the classifier
that will allow you to try different combinations of tuning parameters (including the
logit bias). If you execute the classifier with biases added, you will likely see output
similar to the following (actually, as executing the code takes a long time and incurs
non-negligible costs, you may just want to trust me on this):

https://platform.openai.com/tokenizer

WD 727 6626

9.3 Model tuning 163

@ Nonexistent labels for each input:

Label: negnegnegnegnegnegnegnegnegneg ...; Ground truth: neg
Label: negposnegnegnegnegnegnegnegneg ...; Ground truth: neg
Label: negposnegnegnegnegnegnegnegneg ...; Ground truth: neg
Label: negposnegposnegnegnegnegnegneg ...; Ground truth: neg
Label: posnegposnegposnegposnegposneg ...; Ground truth: pos
Label: posnegposposposSposSposSpospospos ...; Ground truth: neg
Label: posnegposposposSposSposSpospospos ...; Ground truth: neg
Label: negposnegposnegposnegposnegpos ...; Ground truth: neg
Label: negposnegposnegposnegposnegpos ...; Ground truth: pos
Label: negposnegposnegnegnegnegnegneg ...; Ground truth: neg
Number of correct labels: 0

Number of tokens used : 2318 @ Increased token usage

Oh, no—not a single correct classification! What happened? Comparing generated
“labels” to the ground truth reveals the problem (@): we’re only generating the
two possible tokens (which is great!) but just way too many of them (which is not so
great!). That increases token consumption (@) (note that the output length was
limited for generating the example output; otherwise, token consumption would be
much higher), but more importantly, it means our output does not correspond to
any class label.

Why does the model generate so many tokens?

We essentially restrict the model to generate text using only two tokens. Those
are the two tokens we want to see in our output. However, we forgot to enable the
model to generate any tokens that indicate the end of output! That is why the model
cannot stop generating.

There are multiple ways to fix this. We could, of course, add postprocessing to extract
only the first token from the output generated by the language model. That would
(mostly) fix our problem with the class labels. Look at the output, and you’ll see
that using the first token leads to correct output in 7 of 10 cases. However, there is
(another) problem with this approach: we’re paying to generate tokens that we don’t
ultimately use! That’s clearly not what we want. So let’s tune our model even more
by restricting the output length as well. All we need is a single token (this works only
because our two possible class labels can be represented by a single token). That’s
what the max_tokens parameter does. Let’s use it when calling our language model:

response = client.chat.completions.create (
model="'gpt-3.5-turbo',
messages=[
{'role':'user', 'content':prompt}
1,
logit_bias = {981:100, 29875:100}, <—— Defines the bias
temperature=0, max_tokens=1

164

9.4

CHAPTER 9 Optimizing cost and quality

)
When you try it (which should be fast and not costly), you should see this output:

Label: neg; Ground truth: neg

Label: neg; Ground truth: neg

Label: neg; Ground truth: neg

Label: neg; Ground truth: neg

Label: pos; Ground truth: pos

Label: pos; Ground truth: neg

Label: pos; Ground truth: neg

Label: neg; Ground truth: neg

Label: neg; Ground truth: pos

Label: neg; Ground truth: neg

Number of correct labels: 7 (1) Improves on the untuned classifier
Number of tokens used : 2228 @® Reduces token usage

Much better! We have improved the number of correctly handled cases from six
(for the unturned version) to seven (@). That may not sound like much. However,
thinking about the entire data set, it essentially means we have improved precision
from 60% to 70%: that is, thousands more reviews will now be classified correctly!
There is a caveat, of course. In reality, you should probably use a much larger sam-
ple. Due to random variations, the accuracy you observe on a sample may not be
representative of the accuracy for the entire data set. To keep things simple (and
your cost relatively low when trying it), we restrict ourselves to 10 samples here. As an
additional bonus, our token consumption has again been reduced (@) (actually, the
gap in token consumption, compared to a version without any output size bound, is
likely to be much, much larger). Note that the two parameters discussed here are
only a small subset of the available tuning options. You will find more details on
relevant parameters in chapter 3. Whenever you tune a model for a new task, be sure
to consider all parameters that may be potentially relevant. Then try a few reasonable
settings on a data sample to see which option performs best.

Model selection

Let’s assume that we have maxed out our ability to get better performance by tuning
our current model. What else can we do? We can, of course, select a different model.
We saw a few GPT alternatives in the last chapter. If you can select a model specifically
trained for the task you're interested in (e.g., text classification), that’s often worth
a look. Other factors that can influence your model choices are whether the data
you plan to apply the model to is sensitive and whether sending that data to specific
providers of language models is acceptable.

If you want to learn about the relative performance of different models, have
a look at https://crfm.stanford.edu/helm/lite/latest/. This website contains the
results of HELM, Stanford’s Holistic Evaluation of Language Models benchmark.
The benchmark compares language models on various scenarios and contains results

https://crfm.stanford.edu/helm/lite/latest/

TJ 375 5369

9.4 Model selection 165

for specific tasks, as well as average performance, aggregated over various scenarios.
You may want to check this out to get a sense of which models may be interesting to
you. However, as various factors can influence a language model’s performance, it
still pays to evaluate different models on the specific task you’re interested in.

To keep things simple, let’s only consider GPT-4 as an alternative to GPT-3.5 Turbo
(which we used up to this point). Replace the name of the model in the language
model invocation:

response = client.chat.completions.create (
model="'gpt-4"',
messages= [
{'role':'user', 'content':prompt}
1,
logit bias = {981:100, 29875:100}, <—— Defines the bias
temperature=0, max_tokens:l

)

Running the resulting code should lead to the following output:

Label: neg; Ground truth: neg

Label: neg; Ground truth: neg

Label: neg; Ground truth: neg

Label: neg; Ground truth: neg

Label: pos; Ground truth: pos

Label: pos; Ground truth: neg

Label: pos; Ground truth: neg

Label: neg; Ground truth: neg

Label: pos; Ground truth: pos @ Correct classification result
Label: neg; Ground truth: neg

Number of correct labels: 8 @ Best result so far
Number of tokens used : 2228 € Same number of tokens

Compared to the prior version, GPT-4 manages to solve one more test case accurately
(@)! That brings our accuracy to 80% (@), while our token consumption remains
constant (@). That, by the way, is not guaranteed to be the case if we change the
model. As different models may use different tokenizers, representing the same text
may require a different number of tokens for different models. In this specific case,
because GPT-4 and GPT-3.5 use the same tokenizer, the number of tokens does not
change.

Does that mean we’re paying the same amount of money? Not quite. Because
GPT-4 incurs much higher fees per token, we’re paying roughly 120 times more than
before (the relative difference between the per-token prices of GPT-4 and GPT-3.5
Turbo). That’s why we’re trying to make GPT-3.5 perform as well as possible without
resorting to GPT-4.

Occasionally, during model selection and model tuning, it makes sense to look
at the test data yourself. That gives you a better impression of the sweet spots and
limitations of various models and enables you to judge whether the test cases on

166

9.5

CHAPTER 9 Optimizing cost and quality

which your model performs badly are representative. For instance, the following
review is solved correctly by GPT-4 but not by GPT-3.5:

If you want to see a film starring Stan Laurel from the Laurel & Hardy
comedies, this is not the film for you. Stan would not begin to find the
character and rhythms of those films for another two years. If, however,
you want a good travesty of the Rudolph Valentino BLOOD AND SAND, which
had been made the previous year, this is the movie for you. All the
stops are pulled out, both in physical comedy and on the title cards

and if the movie is not held together by character, the plot of
Valentino's movie is used - well sort of.

This review contains positive (toward the end) as well as negative (the beginning)
aspects. Although the final verdict is positive, we may conclude that spending more
money to properly analyze borderline cases like that review is not worth it.

Prompt engineering

Setting aside options to swap models, what else can we do to improve performance
with our model? One area we haven’t looked at yet is the definition of the prompt
we use for classification. Changing the prompt template can have a significant ef-
fect on result quality. The fact that prompt tuning is often crucial has even led to
the introduction of a dedicated term, prompt engineering, describing the process of
searching for optimal prompt templates. What’s more, the challenges of prompt
engineering have led to the creation of multiple platforms offering prompt templates
for a plethora of different tasks. If you’re out of ideas for prompt variants, have a look
at https://promptbase.com/, https://prompthero.com/, and similar platforms. The
business model of such platforms is to enable users to buy and sell prompt templates
that optimize the performance of specific models for specific tasks.

Figuring out what prompt works best typically requires some experimentation.
Next, we will focus on the basics and explore a classical technique to increase output
quality by changing the prompt. We’re talking about few-shot learning here, which
means we’'re helping the model by giving it a few examples. That’s something we
know from everyday life: it is often hard to understand a new task or approach based
on a pure description alone. It is much better to see some examples to get the hang
of it. For instance, in the previous sections, we could have just discussed the semantics
of a few relevant model-tuning parameters. But isn’t it much better to see how they
can be tuned in a concrete example scenario?

Of course it is. Language models “feel” the same way, and adding a few helpful
examples can often improve their performance. So how do we show them examples?
Easy: we specify those examples as part of the prompt. For instance, in our classifica-
tion scenario, we want the language models to classify reviews. An example would be
a review together with the reference class label.

We will use the following prompt template to integrate a single sample into the
prompt:

https://promptbase.com/
https://prompthero.com/

9.5 Prompt engineering 167

[Sample Review]

Is the sentiment positive or negative?
Answer ("pos"/"neg"):[Sample Solution]
[Review to Classifyl]

Is the sentiment positive or negative?
Answer ("pos"/"neg"):

If we replace the placeholders with the sample review, the sample review solution,
and the review we’re interested in classifying, we get, for instance, the following
prompt:

Now, I won't deny that when I purchased @ Sample review

this off eBay, I had high expectations.
Is the sentiment positive or negative? @ Instructions

Answer ("pos"/"neg") :neg © Sample solution

I am willing to tolerate almost anything O Review to classify
in a Sci-Fi movie, but this was almost intolerable.

Is the sentiment positive or negative? © Instructions
Answer ("pos"/"neg"):

You see a sample review (@), instructions (@), and the reference class for the
sample review (@). After that, you find the review we want to classify (@) and the
classification instructions (again) (@), but no solution yet (of course not—that’s
what we want the language model to generate). In this prompt, we provide exactly
one example of a correctly solved task to the model. Doing so may help the model
better understand what we’re asking it to do.

Of course, there are many options to provide samples in the prompt. We have
chosen what is arguably the most straightforward solution: we use the same prompt
structure twice for the two reviews. Because we’re using exactly the same structure, our
prompt is slightly redundant: we repeat the task instructions (@ and @), including
the specification of the two possible class labels. Although we won’t do so here, it
might be interesting to experiment and see whether you can integrate examples into
the prompt in a different way, removing redundancies and reducing the prompt
length (thereby reducing the number of tokens processed and, ultimately, processing
fees).

Up to now, we have only considered adding a single example. But sometimes,
seeing one example is not enough. That’s why it may make sense to add more than
one example for the language model as well. Let’s assume that we have a few samples:
reviews with associated class labels, stored in a data frame called samples. We can
use the following code to generate prompts that integrate those samples:

def create single text prompt (text, label): © Creates a prompt for one review
nnw Create prompt for classifying a single text.

Args:
text: text to classify.
label: correct class label (empty if unavailable) .

Returns:
Prompt for text classification.

168

CHAPTER 9 Optimizing cost and quality

"o

task = 'Is the sentiment positive or negative?'
answer format = 'Answer ("pos"/"neg")'
return f'{text}\n{task}\n{answer format}:{label}"'

def create prompt (text, samples): @ Generates a prompt for all reviews
"1 Generates prompt for sentiment classification.

Args:
text: classify this text.
samples: integrate these samples into prompt.

Returns:
Input for LLM.

"o

parts = []

for , row in samples.iterrows() : © Integrates the samples
sample_text = row['text']
sample_label = row['sentiment']
prompt = create single text prompt (sample text, sample label)

parts += [prompt]

prompt = create single text prompt (text, '') O Adds the review to classify
parts += [prompt]
return '\n'.join (parts)

The create_single_text_prompt function (@) instantiates the following template
for a single review:
[Review]

Is the sentiment positive or negative?
Answer ("pos"/"neg") :[Label]

We use the same function to specify sample reviews, as well as to specify the review,
along with the classification task that we want the language model to solve for us. If we
specify a sample review, the [Label] placeholder will be replaced with the reference
class label for the corresponding review. If we specify the task the language model
should solve, we do not know the correct class label yet. In that case, we replace the
[Label] placeholder with the empty string. It will be up to the language model to
complete the prompt with the actual class label.

The create_prompt function (@) generates the complete prompt, considering
all sample reviews, as well as the review we want to classify. First (@), it iterates over
the sample reviews. We assume that our samples data frame stores review text in
the text column and the associated class labels in the sentiment column. We add
a prompt part (@) for the sample review using the create_single_text_prompt
function (discussed earlier). Finally, we add instructions to classify the review we’re
interested in.

Let’s switch back to using GPT-3.5 Turbo. However, this time, we will use our
new prompt-generation function. For the moment, we will restrict ourselves to a

9.6

9.6 Tunable classifier 169

single example review in the prompt. On the book’s companion website, you can
find training reviews with the correct class labels under Reviews Training, leading
to the file train_reviews.csv. The reviews in this file do not overlap with those in
the reviews.csv file (which we use to test our approach). Adding just the first review
from train_reviews.csv as a sample to the prompts, you should now see the following
output:

Label: neg; Ground truth: neg

Label: neg; Ground truth: neg

Label: neg; Ground truth: neg

Label: neg; Ground truth: neg

Label: pos; Ground truth: pos

Label: pos; Ground truth: neg

Label: pos; Ground truth: neg

Label: neg; Ground truth: neg

Label: pos; Ground truth: pos

Label: neg; Ground truth: neg

Number of correct labels: s @ Equivalent to GPT-4 result
Number of tokens used : 4078 @ Token usage roughly doubles

Hooray! We have increased precision to 80% (@). That’s the same accuracy we got
when using GPT-4 on the original prompts (without sample reviews). At the same
time, our token usage has increased (@). More precisely, because we’re adding a
second review to each prompt (i.e., we have one sample review and the review to
classify), our token consumption has roughly doubled compared to the last version.
However, compared to using GPT-4 on shorter prompts, our current approach is
still about 60 times cheaper (because using GPT-4 is about 120 times more expensive
than using GPT-3.5 Turbo).

Tunable classifier

Now that we have seen quite a few tuning options, you may be tempted to try new
variations. For instance, do we still need to add bias (essentially restricting the output
to the two possible class labels) if we’re adding samples? Can we get even better
precision when using a larger model together with multiple samples in the prompt?
Changing your code to try a new combination quickly becomes tedious. But no
worries, we’ve got you covered! On the book’s website, you can find listing 9.2 under
Tunable Classifier. This implementation lets you try all the tuning variants by setting
the right command-line parameters. We will quickly discuss the code, which integrates
all the code variants discussed previously.

Generating prompts (@) works as described in the last section. The create_prompt
function takes the review text to classify and sample reviews as input. The sample
reviews are added to the prompt, potentially supporting the language models in
classifying the review we’re interested in. Note that we can still see how the language
model performs without any samples (by not specifying any samples). Classification
without any samples corresponds to a special case.

170 CHAPTER 9 Optimizing cost and quality

Listing 9.2 Tunable version of sentiment classifier

import argparse
import openai
import pandas as pd
import time

client = openai.OpenAI ()

def create_single_ text prompt (text, label):
"mrn Create prompt for classifying a single text.

Args:
text: text to classify.
label: correct class label (empty if unavailable).

Returns:
Prompt for text classification.
W
task = 'Is the sentiment positive or negative?'
answer format = 'Answer ("pos"/"neg")'
return f'{text}\n{task}\n{answer format}:{label}"'

def create_prompt (text, samples): © Generates prompts with samples
" Generates prompt for sentiment classification.

Args:
text: classify this text.
samples: integrate these samples into prompt.

Returns:
Input for LLM.
W
parts = []
for , row in samples.iterrows() :
sample_text = row['text']
sample_label = row['sentiment']
prompt = create single text prompt (sample text, sample label)
parts += [prompt]

prompt = create_single_ text prompt (text, '')
parts += [prompt]
return '\n'.join (parts)

@ Calls language models with parameters
def call llm(prompt, model, max_tokens, out_tokens) :
"mro Query large language model and return answer.

Args:
prompt: input prompt for language model.
model: name of OpenAI model to choose.
max_tokens: maximum output length in tokens.
out_tokens: prioritize these token IDs in output.

9.6 Tunable classifier

Returns:

171

Answer by language model and total number of tokens.

nmnon

optional_parameters

{1

if max_tokens:

optional parameters['max_tokens']

if out_tokens:

logit bias

for nr_retries in range(1l, 4):
try:
response =
model=model,
messages=[
{'role':'user',
1,
**optional parameters,
)
answer =

nr_tokens
return answer, nr_tokens

except Exception as e:
print (f 'Exception: {e}')

time.sleep(nr_retries * 2)

max_tokens

{int (tid) :100 for tid in out tokens.split(',')}
optional parameters['logit bias']

= logit_bias

client.chat.completions.create (

'content ' :prompt }

temperature=0

response.choices [0] .message.content
response.usage.total tokens

raise Exception('Cannot query OpenAI model!')

if name == ' main_ ':

parser = argparse.ArgumentParser () © Parses command-line parameters
parser.add _argument ('file path', type=str, help='Path to input file')
parser.add_argument ('model', type=str, help='Name of OpenAI model')
parser.add argument ('max_tokens', type=int, help='Maximum output size')
parser.add_argument ('out_tokens', type=str, help='Tokens to prioritize')
parser.add_argument ('nr_samples', type=int, help='Number of samples')
parser.add argument ('sample path', type=str, help='Path to samples')
args = parser.parse_args()

df = pd.read csv(args.file_path)

samples pd.DataFrame ()

if args.nr_ samples:

O Reads samples from disk

samples = pd.read csv(args.sample path)
samples = samples[:args.nr_samples]
nr_correct = 0
nr_tokens = 0

for , row in df.iterrows():

text row['text']

© Classifies the review

172

CHAPTER 9 Optimizing cost and quality

prompt = create prompt (text, samples)
label, current_ tokens = call_ 1lm(
prompt, args.model,
args.max_tokens,
args.out_ tokens)

ground_truth = row['sentiment'] @ Updates the counters
if label == ground truth:

nr_ correct += 1
nr_tokens += current_tokens

print (f'Label: {label}; Ground truth: {ground truth}')

@ Prints out the counters
print (f'Number of correct labels:\t{nr correct}')
print (f'Number of tokens used :\t{nr_tokens}')

Our call_llmfunction (@) integrates all the tuning parameters mentioned earlier.
First is the name of the model to call (the model parameter). Second, we can specify
the maximum number of output tokens (max_tokens). Finally, we can specify bias:
tokens that should be prioritized when generating output. The out_tokens parameter
allows users to specify a comma-separated list of token IDs to which we assign a high
priority (essentially limiting output to one of these tokens). Although the model
name is required, setting a value of 0 for the max_tokens parameter and the empty
string for the out_tokens parameter allows us to avoid changing OpenAlI’s default
settings.
The tunable classifier uses quite a few command-line parameters (@). Let’s discuss

them in the order in which you need to specify them:

file path—Path to the .csv file containing reviews used to evaluate our lan-

guage model

model—Name of the language model we want to use (e.g., gpt-3.5-turbo)

max_tokens—Maximum number of output tokens to generate per input review

out_tokens—A comma-separated list of tokens to prioritize when generating

output

nr_samples—Number of review samples with solutions to integrate into each

prompt

sample_path—Path to the .csv file containing reviews with correct class labels

to use as samples (this can be empty if the nr_samples parameter is set to 0)

WARNING Limiting the number of output tokens is almost always a good idea.
In particular, you should do it whenever biasing output toward specific tokens
without including any of the “stop” tokens (indicating the end of output).

After parsing input parameters, the classifier reads samples from disk (@) and
classifies reviews (@) while updating counters (@) that are ultimately printed (@).

9.7

9.7 Fine-tuning 173

Let’s see how we can simulate all the different versions of our classifier that we
have discussed so far. Using the following invocation should give us the untuned
version of our classifier, assuming that the file reviews.csv is located in the same
directory as the code itself:

python tunable classifier.py reviews.csv
gpt-3.5-turbo 0 "" 0O "

Note that we don’t specify any tokens to prioritize (we specify the empty string),
don’t restrict the output length (setting it to 0 means no restrictions), and set the
number of samples in the prompt to 0 (which means we can set the path to the file
containing samples to the empty string as well).

The following command, on the other hand, will give us the version that restricts
the output length while prioritizing the tokens that correspond to our class labels:

python tunable classifier.py reviews.csv
gpt-3.5-turbo 1 "981,29875" 0 "™

Finally, we can get the last version we discussed, using one sample per prompt
while tuning the model as before, via the following command (assuming the file
train_reviews.csv is located in the same repository as the code):

python tunable classifier.py reviews.csv
gpt-3.5-turbo 1 "981,29875" 1 "train reviews.csv"

Feel free to try new combinations that we haven’t discussed!

Fine-tuning

So far, we have done everything in our power to squeeze the best performance out of
existing models. Those models have been trained for tasks that are, perhaps, similar
but not exactly like the one we’re interested in. Wouldn’t it be nice to get a model
customized specifically for our task? That is possible when using fine-tuning. Let’s
see how to implement fine-tuning with OpenAI’s models in practice.

Fine-tuning means we take an existing model, such as OpenAI’s GPT-3.5 Turbo
model, and specialize it for a task we’re interested in. Of course, in principle, we
could train our model from scratch. But that is typically prohibitively expensive, and
in addition, we usually don’t find enough task-specific training data to sustain a large
model during training. That’s why it is much better to rely on fine-tuning.

Fine-tuning is typically the last thing we try when maximizing performance for a
specific task. The reason is that fine-tuning requires a certain upfront investment in
terms of time and money. During fine-tuning, we pay OpenAl to create a customized
version of one of its base models just for our task. The price is based on the size of
the training data and the number of times that training data is read (i.e., the number
of epochs). For example, at the time of writing, fine-tuning GPT-3.5 Turbo costs about
0.8 cents per 1,000 tokens of training data and epoch. Also, after fine-tuning, we pay
to use the fine-tuned model. The price per token is higher for the fine-tuned model

174

CHAPTER 9 Optimizing cost and quality

than for the base version. That makes sense as, at least in theory, the fine-tuned
model should perform better for our specific task.

One possible advantage of fine-tuning is that we improve the accuracy of the
model output. Another possible advantage is that we may be able to shorten our
prompts. When using a generic model, the prompt needs to contain a description of
the task to perform (along with all relevant data). On the other hand, our fine-tuned
model should be specialized to perform a single task and perform well on it. If the
model only needs to do one task, in principle it should be possible to leave the task
description out of the prompt because it is implicit. Besides the task description, we
can leave out other information that is helpful for a generic model but not required
for a specialized one. For instance, it may be necessary to integrate samples into the
prompt for the generic model to obtain reasonable output quality, whereas that is
unnecessary for the fine-tuned version.

In our specific scenario, we want to map reviews to a class label (based on the
underlying sentiment of the review author). Previously, we specified the classification
task as part of the prompt (and even provided some helpful examples). Now, perhaps,
when fine-tuning a model, we can leave out those instructions. More precisely, we
may no longer need to use prompts like the following (a prompt containing sample
reviews (@) with instructions (@) and sample solutions (@), along with the review
to classify (@) and corresponding instructions (@)):

Now, I won't deny that when I purchased @ Sample review

this off eBay, I had high expectations.
Is the sentiment positive or negative? @ Instructions

Answer ("pos"/"neg") :neg © Sample solution

I am willing to tolerate almost anything O Review to classify
in a Sci-Fi movie, but this was almost intolerable.

Is the sentiment positive or negative? © Instructions
Answer ("pos"/"neg"):

Instead, we can assume that the model implicitly knows that it should classify reviews
and which class labels are available. Under that assumption, we can simplify the
prompt to this:

I am willing to tolerate almost anything
in a Sci-Fi movie, but this was almost intolerable.

This prompt merely states the review that we want to classify. We assume that all
other task-specific information (such as instructions and samples) is already implicitly
known to the model. As you certainly noticed, this prompt is much shorter than
the previous version. That means we may save money when using the fine-tuned
model instead of the base version. On the other hand, keep in mind that using
the fine-tuned model is more expensive per token than using the base version. We
postpone the corresponding calculations to later. But first, let’s see whether we can
even make such concise prompts work in practice via fine-tuning.

9.8

9.8 Generating training data 175

Generating training data

First we have to generate our training data for fine-tuning. We will use the reviews
with associated class labels contained in the file train_reviews.csv, available on the
companion website under Review Training. OpenAl expects training data for fine-
tuning in a very specific format. Before we can fine-tune, we need to transform our
.csv data into the required format.

Training data for fine-tuning OpenAlI’s chat models generally takes the form of
successful interactions with the model (i.e., examples where the model produces
the output we ideally want it to produce). In the case of OpenAlI’s chat models,
such interactions are described via message histories. Each message is described
by a Python dictionary object. For instance, the following describes a successful
completion, given the earlier example review as input:

{'messages': [
{'role':'user', 'content':'I am willing to tolerate almost anything
o)
{'role':'assistant', 'content':'neg'}

1}

This is a negative review (i.e., the review author does not want to recommend the
movie), and therefore, we ideally want the model to generate a message that contains
the single token neg. That’s the interaction depicted here.

To make fine-tuning worth it, you typically want to use at least 50 samples and
up to a few thousand samples. Using more samples for fine-tuning can improve
performance but is also more expensive. On the other hand, this is a one-time fee
because you can reuse the same fine-tuned model for a potentially large data set (and
the usage fees for the fine-tuned model do not depend on the amount of training
data used for fine-tuning). The example file (reviews_train.csv) contains 100 samples
and is therefore within the range of data sizes where fine-tuning may become useful.

OpenAl expects data for fine-tuning in JSON-lines format (such files typically have
the suffix jsonl). Files that comply with this format essentially contain one Python
dictionary in each line. In this case, each line describes one successful interaction
with the model (using the same format as in the previous example). To handle
JSON:-lines files more easily from Python, we will use the jsonlines library. As a first
step, go to the terminal and install the library using the following command:

pip install jsonlines==4.0

Now we can use the library to transform our .csv data into the format required by
OpenAl. Listing 9.3 uses the get_samples function (@) to prepare samples in the
required format. The inputis a pandas DataFrame (df parameter) containing the
training samples in the usual format (we assume that the text column contains the
reviews and the sentiment column contains the associated class labels). We turn
each sample into a successful message exchange with the model. First, we create
the message sent by the user (@), which only includes the review text. Second, we
create the desired answer message to generate by the model (associated with the

176

CHAPTER 9 Optimizing cost and quality

“assistant” role) (@). The full set of training samples is a list of message exchanges,
each prepared in the previously mentioned format.

Listing 9.3 Generating training data for fine-tuning

import argparse
import jsonlines
import pandas

def get samples (df) : @ Generates training data
"1 Generate samples from a data frame.

Args:
df: data frame containing samples.

Returns:
List of samples in OpenAI format for fine-tuning.

"o

samples = []
for , row in df.iterrows():

@ Creates a user message
text = row['text']
user message = {'role':'user', 'content':text}

© Creates an assistant message
label = row['sentiment']
assistant message = {'role':'assistant', 'content':label}

sample = {'messages': [user message, assistant message]}
samples += [sample]

return samples

if name == ' main ':

O Parses the command-line arguments

parser = argparse.ArgumentParser ()

parser.add _argument ('in _path', type=str, help='Path to input')
parser.add_argument ('out_path', type=str, help='Path to output')
args = parser.parse_args()

df = pandas.read csv(args.in_path)
samples = get_samples (df)

© Stores the training data in new format
with jsonlines.open(args.out_path, 'w') as file:
for sample in samples:
file.write (sample)

Listing 9.3 expects as input a path to the .csv file with training samples, as well as
the path to the output file (@). The output file follows the [SON-lines format, so we
ideally assign an output path ending with .jsonl. After transforming the input .csv file

9.9

9.9 Starting a fine-tuning job 177

into the fine-tuning format, we use the jsonlines library to write the transformed
samples into the JSON-lines file (@).

As usual, you don’t need to enter the code for this listing. You can find it on the
website under Prepare Fine-Tuning. Run it from the terminal using the following
command (we assume that the file train_reviews.csv is located in the same repository
as the code):

python prep fine tuning.py train reviews.csv train reviews.jsonl

You may want to manually inspect the train_reviews.jsonl file that was (hopefully)
generated by running this command. You should see one training sample on each
line, represented as a Python dictionary.

Starting a fine-tuning job

Now that we have our training data in the right format, we can create a fine-tuning
job on OpenAT’s platform. Of course, because the model is stored only on OpenAl’s
platform, we cannot do the fine-tuning ourselves. Instead, we send our training data
to OpenAl and request to use that data to create a customized model. To create a
customized model, we must first choose a base model. In this case, we will start from
the GPT-3.5 Turbo model (which makes it easier to compare with the results we have
obtained so far).

We can create a fine-tuning job using the following code snippet (assuming that
in_path is the path to the file containing training data):
import openai
client = openai.OpenAlI ()

reply = client.files.create(
file=open(in_path, 'rb'), purpose='fine-tune')

The reply object will contain a Python object with metadata about our fine-tuning
job (assuming the job creation succeeds). Most importantly, we get the ID of the job
we just created in the reply.id field. Fine-tuning jobs typically take a while (around
15 minutes is typical for the fine-tuning job we describe here). That means we have to
wait until our fine-tuned model has been created. The job ID allows us to verify the
status of our fine-tuning job and retrieve the ID of the freshly created model once it
is available. We can retrieve status information about our fine-tuning job using the
following piece of Python code:

reply = client.fine tuning.jobs.retrieve(job_id)

The reply.status field reports the status of the fine-tuning job, which will eventually
reach the value succeeded. After that has happened, we can retrieve the ID of the
fine-tuned model in reply.fine tuned model.

Listing 9.4 starts the fine-tuning process, waits until the corresponding job finishes,
and finally prints out the ID of the generated model. Given a path to a file containing
training data, the code first uploads the file containing training data (@). It retrieves
the file ID assigned by OpenAl and uses it to create a fine-tuning job (@). Then,

178

CHAPTER 9 Optimizing cost and quality

we iterate until the fine-tuning job completes successfully (€). In each iteration,
we print out a timer (measuring seconds since the start of the fine-tuning job) and
check for status updates with regard to the job (@). Finally, we retrieve the model
ID and print it (@).

Listing 9.4 Fine-tuning a GPT model using training data

import argparse
import openai
import time

client = openai.OpenAI ()

if _name_ == '_main_':

parser = argparse.ArgumentParser ()
parser.add_argument ('in _path', type=str, help='Path to input file')
args = parser.parse_args()

reply = client.files.create (© Uploads training data to OpenAl
file=open(args.in path, 'rb'), purpose='fine-tune')
file id = reply.id

reply = client.fine tuning.jobs.create (@ Creates a fine-tuning job
training file=file id, model='gpt-3.5-turbo')

job_id = reply.id

print (f'Job ID: job_id!')

status = None

start_s = time.time()

while not (status == 'succeeded'): @ Iterates until the job completes

time.sleep(5)
total_s = time.time() - start_s
print (f'Fine-tuning since total s seconds.')

O Gets the job status

reply = client.fine_tuning.jobs.retrieve(job_id)
status = reply.status

print (f'Status: {status}')

© Retrieves the ID of the fine-tuned model
print (f£'Fine-tuning is finished!')
model_id = reply.fine_ tuned model
print (f'Model ID: {model id}')

You can find the code on the website under Start Fine-Tuning. Run it using the
following command (where train_reviews.jsonl is the previously generated file):

python fine tune.py train reviews.jsonl

If you run the script to completion, you will see output such as the following (this is,
of course, just part of the output; dots represent missing lines):

YW 529 1698

9.10

9.10 Using the fine-tuned model 179

Job ID:
Fine-tuning since 5.00495171546936 seconds.
Status: validating files

Fine-tuning since 46.79299879074097 seconds.
Status: running

Fine-tuning since 834.6565797328949 seconds.
Status: succeeded

Fine-tuning is finished!

Model ID: ft:gpt-3.5-turbo-0613...

After printing out the job ID, we receive regular updates on the job status, typically
proceeding from validating files to running to (hopefully) succeeded. The pro-
blem is that the job may take a while to finish (for the previous example, about 14
minutes). If you don’t want to run the script continuously (e.g., to switch off your
computer), you can interrupt the script after the fine-tuning job has started (you
will know because the script prints out the job ID at that point). The fine-tuning job
will proceed as planned on OpenAl’s servers. Depending on your setup, you may
even receive an email notifying you once the job has finished. Otherwise, you can
periodically run this script.

Listing 9.5 Checking for the status of fine-tuning jobs

import argparse
import openai

client = openai.OpenAI ()

if name == '_main_ ':
parser = argparse.ArgumentParser ()
parser.add argument ('job id', type=str, help='ID of fine-tuning job')
args = parser.parse_args()
© Retrieves and prints the job metadata
job_info = client.fine tuning.jobs.retrieve(args.job id)
print (job_info)

Given the job ID (retrieved from the output of listing 9.4), the script retrieves and
prints the job metadata (@), including the job status and the ID of the resulting
model (after the job has finished successfully).

Using the fine-tuned model

Congratulations! You have created a specialized model, fine-tuned to the task (review
classification) you care about. How can you use it? Fortunately, doing so is straight-
forward using the OpenAl library. Instead of specifying the name of one of the
standard models (e.g., gpt-3.5-turbo), we now specify the ID of our fine-tuned

180

CHAPTER 9 Optimizing cost and quality

model, like so (replace the placeholder [Fine-tuned model ID] with the actual
model ID):

import openai
client = openai.OpenAI ()

response = client.chat.completions.create (
model="' [Fine-tuned model ID]',
messages=[
{'role':'user', 'content':prompt}
]
)

As before, we assume that the prompt variable contains the prompt text. The prompts,
however, differ for our fine-tuned model. Previously, we described the classification
task, along with the review text. Now we have trained our custom model to map
the review text alone to an appropriate class. That means our prompt-generation
function simplifies to the following (in fact, you might argue that creating a dedicated
function is no longer required):

def create prompt (text) :
"mn Create prompt for sentiment classification.

Args:
text: text to classify.

Returns:
Prompt for text classification.

nnon

return text

Instead of generating multipart prompts, we return the review text to classify. You may
want to find out what happens when using the simplified prompt with the original
model (gpt-3.5-turbo). You will see output like this:

Label: I understand your concern about smoking in movies,
especially those intended for children and adolescents.
Smoking in films can have an influence on young viewers
and potentially normalize the behavior. However, it is
important to note that not all instances of smoking in
movies are the result of intentional product placement
or sponsorship by tobacco companies.

Clearly, the model gets confused about our intentions—that is, what we expect it
to do with the input reviews. Instead of generating correct class labels, it writes
elaborate analyses commenting on the primary points raised in the reviews. This
is not unexpected. Imagine if someone handed you a review without any further
instructions. How would you know that the person wanted you to classify the review,
let alone the correct labels of the possible classes? It would be almost impossible to
do so, and the same applies to language models.

Summary 181

However, if we switch to our fine-tuned model and provide the same prompts as
input, we will get the following output instead:

Label: neg; Ground truth: neg

Label: neg; Ground truth: neg

Label: neg; Ground truth: neg

Label: neg; Ground truth: neg

Label: pos; Ground truth: pos

Label: pos; Ground truth: neg

Label: pos; Ground truth: neg

Label: neg; Ground truth: neg

Label: neg; Ground truth: pos

Label: neg; Ground truth: neg

Number of correct labels: 7 @ Improved accuracy
Number of tokens used : 2085 @® Lower token consumption

Note that even without setting any tuning parameters (or providing any samples
in the prompt), we now get an accuracy of 70% (@), rather than the 60% in our
original version! Also, the number of tokens used is reduced by about 200 compared
to the initial version (@). This is because we omit the instructions (and class labels)
in each prompt.

Okay! We have seen that we can fine-tune a model to classify reviews accurately
while reducing the prompt size. But the question remains: Was it worth it? Let’s do
some calculations to find that out. We set aside the cost of generating the fine-tuned
model because we only have to do that once (and in our example scenario, we assume
that we want to analyze one year’s worth of reviews). Without fine-tuning, we can
achieve the same accuracy (70%) with the generic model when exploiting tuning
parameters (setting bias and a limit on the number of output tokens). In that case,
we use 2,228 tokens for our 10 sample reviews. After fine-tuning, we only use 2,085
tokens for our sample reviews. However, with the generic model, we pay 0.05 cents
per 1,000 input tokens. On the other hand, for the fine-tuned model, we pay 0.3 cents
per 1,000 tokens. That means our cost per token is six times higher after fine-tuning!
The moderate decrease in the number of tokens processed does not amortize the
higher fees per token in this specific scenario.

In general, fine-tuning can be very helpful in increasing quality and possibly
reducing costs. However, be aware that it comes with various overheads. Before using
a fine-tuned model in production, evaluate it experimentally, do your calculations,
and make sure it is worth it!

Summary

Tuning parameter settings can influence model performance and cost.
Consider limiting output length and introducing token logit bias.

Do not always use the largest available model, as doing so increases cost.
Identify the best model for your task by evaluating it on samples.

182

CHAPTER 9 Optimizing cost and quality

The design of the prompt can have a significant effect on performance.
Include samples of correctly solved tasks in the prompt for few-shot learning.
Fine-tuning allows you to specialize base models to the tasks you care about. It
may allow you to reduce prompt size due to specialization.

Fine-tuning incurs overhead proportional to the amount of data trained on. It
also increases the cost per token when you use the resulting model.

Software frameworks

This chapter covers

Building applications with LangChain
Solving complex tasks with agents
Querying data with Llamalndex

Up to now, we’ve mostly been using OpenAlI’s Python library to interact with language
models. This library offers basic functionality for sending prompts and retrieving
answers from GPT and other OpenAl models (as well as options for tuning and
fine-tuning). The libraries from other providers, such as Anthropic and Cohere, offer
similar functionality. As long as your data-analysis tasks are simple, this is probably all
you need. However, what if your data analysis requires a complex multistep pipeline,
possibly integrating many different data formats?

At that point, you may want to switch to a more powerful software framework.
Several higher-level frameworks for building complex applications on top of language
models are currently emerging. In this chapter, we’ll discuss two of the most popular
contenders: LangChain and Llamalndex. The former is a general framework for
building applications using large language models. What’s more, it comes with various
useful built-in components that implement popular use cases for language models.
Llamalndex, on the other hand, specifically supports use cases where language
models need to interact with large data sets.

183

184

10.1

CHAPTER 10 Software frameworks

To get the hang of it, we’ll first write a simple text-classification pipeline using
LangChain. Then we’ll explore some of the advanced features of LangChain. More
precisely, we’ll see how LangChain supports agents on top of language models. Cre-
ating an agent means putting the language model itself into the driver’s seat, giving
it lots of freedom on how to accomplish a given task while using a collection of tools
provided by the user. We will use such agents to solve complex data-analysis tasks
independently, using a mix of tools to access different data sources. Next, we’ll see
how Llamalndex easily ingests large amounts of data in diverse data formats and
makes them usable for language models. Internally, it uses cheap language models
to map data snippets and analysis tasks to vector representations, after which it maps
tasks to data based on the similarity between those vectors. Finally, we’ll compare the
two frameworks and discuss tradeoffs between those frameworks and the libraries
offered by OpenAl and other language model providers.

LangChain

If you want to create a complex application based on language models, you should
probably check out LangChain. The framework launched in October 2022 and has
been gaining popularity quickly (leading to the creation of a corresponding startup
in April 2023). At the time of writing, LangChain is still developing rapidly. Be sure
to run the code in this section with the right LangChain version (because future
versions may change the interfaces).

As the name suggests, LangChain relates to language models (Lang) and chains.
In LangChain terminology, a chain is simply a sequence of steps. Each step may
correspond to the invocation of a language model, a data-processing step, or the
invocation of an arbitrary tool. The important point here is that we no longer assume
that a single call to a language model will solve our problem (which was the case
for most of the scenarios we have discussed in this book). Instead, we assume that
we need a complex network of connected components. That’s the scenario where
LangChain shines!

To use LangChain, you first need to install it. Go to a terminal, and run the
following command:

pip install langchain==0.1.13

As we mentioned, you need to install the right LangChain version if you want to run
the following code samples! LangChain is currently changing so quickly that the
code may not work with a different version.

Beyond the LangChain core, you may want to install libraries that supportlanguage
models from specific providers. In the following sections, we’ll be using OpenAl’s
models. Run the following command in the terminal (and, again, make sure to use
the version specified):

pip install langchain-openai==0.1.1

10.2

10.2.1

10.2 Classifying reviews with LangChain 185

Support for other providers, such as Anthropic and Cohere, is equally available.
Okay, that’s it! After running these commands, you’re ready to run the sample
projects discussed next.

Classifying reviews with LangChain

One of the first projects we did was text analysis with language models. Remember
chapter 4 We used language models to classify reviews based on the underlying
sentiment (is this a recommendation or a warning?). We’ll do the same here; we will
just use LangChain in our code. Comparing the LangChain code with the original
should give you a first impression of how LangChain can help simplify building
applications with language models.

Overview

We will create a chain to classify text documents. A LangChain chain may involve
many steps, each implemented by invoking a language model or a generic Python
function (e.g., to parse the results of language model invocations into a standardized
format). The term chain is actually slightly misleading. Although you may imagine a
chain as a sequence of consecutive steps, the chains in LangChain are much more
powerful. For instance, they may involve parallel steps as well as conditional execution.
However, for the simple text-classification application, we won’t need such advanced
features. Instead, we will restrict ourselves to a simple chain with just a few steps.

Our chain will integrate several standard components offered by LangChain. The
first component in our chain is a prompt template. As in chapter 4, this template
describes the classification task and the expected output format. You may wonder
what has changed compared to the previous code version. After all, we have been
discussing prompt templates all along. The difference is that LangChain introduces a
dedicated class to represent prompt templates. This class offers various convenience
functions for prompt templates: for example, for creating and instantiating them.
At the same time, LangChain offers a hub allowing users to upload and download
prompt templates (as well as many other components). In our simple scenario, we
won’t need any of these advanced features. Instead, we just need to instantiate our
prompt template by passing a single parameter (the text to classify) as input.

The second step in our chain is a language model. Again, we have been using
language models throughout this book, but LangChain adds several helpful functions
on top of the language model object. For instance, it is easy to automatically log
all language model invocations, and LangChain offers convenience functions for
different invocation scenarios (e.g., batch and stream processing). Again, we won’t
use those advanced features here. Instead, we will pass the prompt (the first step in
our chain) to the language model to generate a reply.

The third step in our chain is a parser, extracting the answer string from the reply
generated by the language model. You may remember from chapter 3 that OpenAl’s
language models generate detailed replies, integrating one or multiple answers as

186

10.2.2

CHAPTER 10 Software frameworks

well as various types of metadata (e.g., information about token usage). The parser
automatically extracts the answer string we’re looking for from the result object
(which works for OpenAl models as well as for all other providers). The result of the
pipeline is a single token indicating whether the input review is a recommendation.
Figure 10.1 illustrates the three steps of this pipeline.

Input

(Prompt template)

(Language model)

(Output parser)
Output

Figure 10.1 Components in our LangChain classification chain

Creating a classification chain

Time to implement our chain in Python! First we need a prompt template. We use the
same template as in chapter 4, but this time, we use LangChain’s Chat Prompt Template
class:

from langchain core.prompts.chat import ChatPromptTemplate
prompt = ChatPromptTemplate.from template (
"{text}\n' © Text placeholder
'Is the sentiment positive or negative?\n'
'Answer ("Positive"/"Negative")\n')

You may notice the reference to chat models (after all, the class we’re instantiating is
called chatPromptTemplate). As discussed in chapter 3, chat models process a history
of prior messages rather than a single input message. Many of the most recently
released models are chat models. In LangChain, chat models require a specialized
prompt template (which instantiates into a sequence of messages rather than a single
text). This is the type of template we’re creating here. The template is the same as
we used in chapter 4. It contains a placeholder (@) for the input text to classify. We
generally use curly braces ({}) to mark placeholders in prompt templates; they are
replaced with concrete values when instantiating the prompt.

Second, we need a language model to process prompts. The following code
instantiates the GPT-40 model from OpenAl:

from langchain openai import ChatOpenAI
11lm = ChatOpenAlI (
model="'gpt-40', temperature=0,
max_tokens=1)

10.2.3

10.2 Classifying reviews with LangChain 187

The chatOpenAI class covers all chat models by OpenAl. It is imported from the
langchain_openai package, featuring functionality to support the use of OpenAl
models in LangChain. Other providers, such as Anthropic and Cohere, have their
own associated packages offering comparable functionality for their models (note
that you need to install those packages separately via pip). The parameters in the
constructor of ChatOpenAI may seem familiar: we choose the model (gpt-40), set
temperature to 0 (to reduce the degree of randomness in the output), and limit
the maximum number of output tokens to one (because both possible class labels,
Positive and Negative, consist of a single token).

Third, we need to extract the answer string from the (more detailed) reply of our
language model. That’s easy to do with strOutputParser. LangChain output parsers
implement a wide range of transformations on the output of a model invocation. In
this case, we only need a very simple transformation, extracting the desired answer
string. The following piece of code creates a corresponding parser:

from langchain core.output_parsers.string import StrOutputParser
parser = StrOutputParser ()

Finally, we’ll put all the components together in a chain. To do so, we can use the
LangChain Expression Language (LCEL). If you’re a Linux user, the following syntax
should look familiar to you:

from langchain core.runnables.passthrough import RunnablePassthrough
chain = ({'text':RunnablePassthrough()} | prompt | llm | parser)

To use the output of an operation as input for the following step, we connect them
with the pipe symbol (|). The command creates a chain that connects the previously
mentioned components. In addition, it specifies the input that the chain expects. In
our case, the prompt template has a placeholder for the text to classify.

At the start of the chain, we mark this parameter as RunnablePassthrough. This
gives us a lot of flexibility in terms of how we pass inputs to the chain. For instance,
the following code illustrates how to process a list of inputs using the previously
created chain:

inputs = ['This movie is great!', 'This movie is bad!']
outputs = chain.batch (inputs)

Putting it together

Time to finalize our code for text classification! The code in listing 10.1 takes as input
a path to a .csv file containing a text column. Executing the code generates a result
file containing an additional column called class with the classification result. In
other words, the code does exactly the same thing as that from chapter 4, but this
time using LangChain.

from langchain openai import ChatOpenAI
from langchain core.prompts.chat import ChatPromptTemplate

188

10.2.4

CHAPTER 10 Software frameworks

from langchain core.output_parsers.string import StrOutputParser
from langchain core.runnables.passthrough import RunnablePassthrough

import argparse
import pandas as pd

def create chain(): @ Creates a chain
" Creates chain for text classification.

Returns:
a chain for text classification.

nnon

prompt = ChatPromptTemplate.from template (@ Createsa prompt template
{text}\n'
'Is the sentiment positive or negative?\n'
'Answer ("Positive"/"Negative")\n')

1lm = ChatOpenAI (© Creates an LLM object

model="'gpt-40', temperature=0,
max_ tokens=1)
parser = StrOutputParser () O Creates an output parser

© Creates a chain
chain = ({'text':RunnablePassthrough()} | prompt | 1llm | parser)
return chain

if name == ' main ':

parser = argparse.ArgumentParser ()
parser.add_argument ('file path', type=str, help='Path to input file')
args = parser.parse_args()

df = pd.read csv(args.file path) @ Reads the data

chain = create chain() @ Creates a chain
results = chain.batch(list (df['text'])) O Usesit
df['class'] = results @ Stores the output

df.to_csv('result.csv')

The create_chain function (@) implements the steps discussed in the last section.
It generates a prompt template for classification (@), then a chat model (@), and
finally an output parser (@). The result is a chain connecting all those components
(@).

After reading the command-line parameters, the code reads the input data (@),
creates a corresponding chain (@), and finally applies the chain to the list of input
texts (@). The classification results are added to the input data and stored on disk

(©).

Trying it out
Time to try it! As usual, you will find the code for listing 10.1 on the book’s companion
website in the chapter 10 section. Download the code (the listingl.py file) and,

10.3

10.3 Agents: Putting the large language model into the driver’s seat 189

optionally, a file containing reviews to classify (such as reviews.csv from chapter 4).
Open the terminal, and switch to the folder containing the code. Assuming that
reviews.csv is located in the same folder, run the following command:

python listingl.py reviews.csv

Check the folder containing the code. You should see a new file, result.csv, with
the desired classification results. So far, we have only verified that we can do the
same things using LangChain that we can do with OpenAI’s libraries directly (even
though, arguably, the LangChain code is cleaner). In the next section, we’ll see that
LangChain enables us to do much more than that.

Agents: Putting the large language model into the driver’s seat

So far, you may have considered language models as (highly sophisticated) tools.
Based on your input, the language model produces output. If data processing requires
more than the language model can accomplish, it is up to you, the developer, to add
the necessary infrastructure. For instance, assume that you’re building a question-
answering system for math questions. Realizing that language models are bad at
calculating things (which, ironically for a computer program, they are), you may
consider the following approach: based on the user question, the language model
translates the input into a mathematical formula. Then that formula is parsed and
evaluated by a simple calculator tool. The output of that tool is sent to the user.

So far, so good. It gets more complicated in situations where you have not one
but multiple math tools. Perhaps one tool solves differential equations, and another
evaluates simple arithmetic equations. In such cases, you can expand your approach
with a classification stage, mapping the user input to the most suitable tool. However,
this approach breaks down in situations where answering the user question may
require not applying a single tool but multiple invocations of different tools, possibly
using the output of one tool as input for the next invocations. In such cases, manually
covering each possible sequence of required tool invocations is simply not feasible.

This is the type of use case where agents become useful. Agents ? are a fairly novel
way of using large language models. At the core of this approach is a change in
perspective. Instead of considering the language model a tool used as a step within a
pipeline designed by the developer, we make the language model an independent
agent. Rather than trying to orchestrate the order in which the language model and
other processing steps are applied (which we did in the last section), we leave it up to
the language model to decide which processing steps are applied in which order. The
advantage of this approach is that it is much more flexible, freeing us as developers
from having to foresee each possible development in advance to create an associated
branch in our processing logic.

Agents can be useful for complex data-analysis tasks where it is unclear, a priori,
which data sources or processing methods may be required to satisfy a user’s request.

190

CHAPTER 10 Software frameworks

Two terms are central to the agent approach, and we will look at them next: the agent
and its tools.

Let’s start by discussing tools. A tool can encapsulate arbitrary functionality. It is
a function that the language model can use if it deems it necessary. When we use
LangChain or similar frameworks to implement agents, a tool is typically implemented
as a Python function. Each tool must be associated with a description in natural
language. This description is shown to the language model as part of the prompts.
Based on this description, the language model can decide whether a tool seems
helpful in a given context. To use a tool, the language model requires a description
of the input parameters and the output semantics. Similar to human programmers,
choosing meaningful parameter names and writing precise documentation helps
language models use tools effectively. Because agents are implemented via language
models, a full description of all available tools is typically provided as part of the
input prompt.

Agents use tools whenever they are required to solve a complex task specified by
the user. Agents are implemented via language models. Although fine-tuning can
improve the performance of language models as agents, generic models should work
in principle. The secret behind turning language models into agents lies less within
the model itself but rather in the way it is prompted. At a minimum, corresponding
prompts integrate the following components:

A description of a high-level task the agent should solve. This description is
provided by the user.

A list of available tools, together with a description of their functionality and
their input and output parameters.

A description of the expected output format. This enables mapping the output
of the language model to tool invocations.

Given such a prompt, the language model can produce output requesting specific
tool invocations. The infrastructure implementing the agent approach parses the
output, maps it to corresponding tools and input parameter values, and obtains the
invocation result. In the next iteration, the result of the tool invocation is added to
the input prompt. In this way, the language model can essentially access the results of
tool invocations. Based on that, the language model can choose to apply more tools
(possibly using the results of prior tool invocations as inputs) or terminate if a final
answer is available.

Figure 10.2 summarizes this process. The user-specified task, together with a
detailed description of all tools, forms the input to the language model. The output
of the language model is parsed and mapped to an action. Either this action represents
the invocation of a tool (in that case, the invocation command contains values for
all input parameters of the tool), or it represents termination (in this case, the
termination command contains what the language model believes is an answer to the
input task). If the action is a tool invocation, the corresponding call is executed. The
result is added to the prompt used in the next iteration. Iterations continue until the

10.3 Agents: Putting the large language model into the driver’s seat 191

language model decides to terminate (or until a user-specified limit on the number
of iterations is reached).

Task

—

Generate prompt

Descriptions

(Tools] [Language model]

Invocations

—

Process actions

Output

Figure 10.2 Using language models as agents. Given a prompt describing the task and available tools,
the language model decides on termination and tool invocations. Results of tool invocations are added to
the prompt used for the next iteration.

At this point, you may be curious what the corresponding prompts look like. Let’s
examine the standard prompt template used for agents in LangChain. You can
download the prompt template from LangChain’s hub. If you want to do so, install
the hub first using the following command in the terminal:

pip install langchainhub==0.1.15

Then run the following code in Python to print out the standard template for one of
the most popular agent types:

from langchain import hub
prompt = hub.pull ('hwchasel7/react"')
print (prompt.template)

You should see the following output:

© General scenario

Answer the following questions as best you can.
You have access to the following tools:

{tools} @ Tool descriptions
Use the following format: € Format description

Question: the input question you must answer
Thought: you should always think about what to do
Action: the action to take, should be one of [{tool names}]
Action Input: the input to the action
Observation: the result of the action
(this Thought/Action/Action Input/Observation can repeat N times)
Thought: I now know the final answer
Final Answer: the final answer to the original input question

192

10.4

10.4.1

CHAPTER 10 Software frameworks

Begin!

Question: {input} O Userinput
Thought: {agent scratchpad} © Prior results

This prompt template describes the general scenario (@) (there is a question that
needs answering), available tools (@), and the process to solve the task (@). The
prompt template contains multiple placeholders representing tool descriptions (@),
the input from the user (@), and the results of prior iterations (@). As we will see
in the following sections, LangChain offers various convenience functions to create
and execute agents based on this and similar prompt templates.

Building an agent for data analysis

In this section, we will use LangChain to build an agent for data analysis. This agent
will be able to access different data sources with structured and unstructured data.
What’s more, the agent will decide which of those sources to access and in which
order. It may even use information obtained from one source to query a second
source (e.g., to access a structured database about video game sales to identify the
most sold game in a specific year and then use the game title to query the web for
further information).

Overview

Our data-analysis agent implements the approach we discussed in the previous section.
It uses a language model to decide which tools to invoke in which order and with
what input parameters. In our example scenario, we will provide the agent with tools
to access a relational database (as well as obtain information about its structure,
such as the names of available tables). We also provide the agent with a tool that
enables web search (exploiting existing search engines in the background). Taken
together, we get an agent that can query a relational database and use the web to
obtain information that relates to the database content.
Let’s start our discussion with a more detailed description of the tools we will

provide to the agent. In total, the agent will have access to the following five tools:

sql db list tables lists all tables in the relational database.

sql_db_schema returns the SQL schema of a table, given the table name.

sql_db_query_checker enables the agent to validate an SQL query.

sql_db_query evaluates an SQL query and returns the query result.

search enables the agent to search the web via keywords, returning web text.
The first four tools help the agent access a relational database. The last tool enables
the agent to retrieve information from the web. Given a user-specified task, the agent
decides (using the underlying language model) which of these tools to invoke and
in which order. Figure 10.3 illustrates this scenario.

10.4.2

10.4 Building an agent for data analysis 193

—| sgl db list tables '4—
Task Answer [= —

I

[LLM agent]4——»[sql_db_schema]<—

—(Relational DB]

—>[sql db_query checker]4—

—>[sql_db_query)‘—

—>(search)4—(Web text]

Figure 10.3 The data agent uses multiple tools to explore the structure and query a relational data-
base. In addition, the agent can retrieve web text via the web search tool.

Creating an agent with LangChain

Creating an agent with LangChain is fast! LangChain even offers specialized con-
structors for agents that access a structured database. We will use those features in
the following code.

Agents are implemented via language models. To create an agent, we first have to
create a language model object:

from langchain openai import ChatOpenAI
1lm = ChatOpenAI (
temperature=0, model='gpt-40')

We’re creating an OpenAl language model of type chat. More precisely, we refer to
the GPT-40 model again.

Next, we create an object representing our relational database. We will query an
SQLite database stored on disk. Assume that dbpath stores the path of the correspond-
ing database file (typically, such files have the .db suffix). We can create a database
object using the following code:

from langchain community.utilities.sql database import SQLDatabase
db = SQLDatabase.from uri(f'sglite:///{dbpath}")

We mentioned four tools for accessing the relational database. Fortunately, all of
these tools will be automatically created from the database object. However, we still
need to create a tool for web search.

We will use a builtin component of LangChain, the SerpAPI tool. To use this tool,
you first need to register for an account on the SerpAPI website. Open your browser,
go to https://serpapi.com/, click the Register button, and create a corresponding
account. To execute the code presented next, you will need to retrieve your API
access key (available at https://serpapi.com/dashboard). You also need to install a

https://serpapi.com/
https://serpapi.com/dashboard

194

10.4.3

CHAPTER 10 Software frameworks

LangChain extension to enable the web search tool. Go to the terminal, and run the
following command:

pip install google-search-results==2.4.2

After that, all it takes is the following snippet of Python code to generate a tool for
web search (assuming that 11m contains the previously created language model object
and serpaikey the SerpAPI access key):

from langchain.agents.load_tools import load_ tools

extra tools = load_ tools(
['serpapi'], serpapi_api_key=serpaikey, 1llm=11lm)

The load_tools function is used for standard tools by passing the names of the
desired tools as parameters. In this case, we only need the web search tool, and
we pass only a single entry in the list of tool names (serpapi). After the call to
load_tools, we store the resultin extra_tools: a list of tools with a single entry (the
web search tool). We now have all the components we need to create an agent using
LangChain.

Assume that db contains the database object, created previously, and 11m the
language model generated before. We initialize an agent for SQI-based data access
using the following code:

from langchain community.agent toolkits.sqgl.base import create sql agent
agent = create_sqgl_agent (

1llm=11m, db=db, verbose=True,

agent type='openai-tools',

extra_tools=extra tools)

The create_sql_agent command is a convenience function offered by LangChain
to create agents for SQIL-based data access. The four previously mentioned tools
for relational database access (useful for retrieving table names, showing table sche-
mata, validating SQL queries, and, ultimately, issuing them) are added automatically
without us having to add them explicitly. There is only one more tool we want in
addition to the SQIL-focused tools: the web search capability. Such tools are speci-
fied in a list via the extra_tools input parameter. Setting the verbose flag to True
enables us to follow the “thought process” leading the agent to call specific tools
(we will see some example output later). The agent type, openai-tools in this case,
determines the precise prompt to use as well as which parsers to use to map the
output of the language model to tool invocations.

After creating the agent, we use the following code to apply the agent to a specific
task (we assume that the variable task stores a natural language description of the
task we want to solve):

agent .invoke ({'input':task})

Complete code for data-analysis agent

Listing 10.2 brings all of this together: after reading the SerpAPI API access key, as
well as the path to the database file and a question from the command line, it creates

10.4 Building an agent for data analysis 195

a language model object (@), then a database (@), the web search tool (@), and,
finally, the agent (@). It invokes the agent (@) on the input question. The output
produced by the agent terminates with an answer to that question (or with a failure
message if the agent is unable to find an answer).

import argparse

from langchain.agents.load tools import load tools

from langchain community.utilities.sql database import SQLDatabase

from langchain community.agent toolkits.sqgl.base import create_sqgl_agent
from langchain openai import ChatOpenAI

if name__ == '_main_ ':

parser = argparse.ArgumentParser ()

parser.add_argument ('serpaikey', type=str, help='SERP API access key')
parser.add_argument ('dbpath', type=str, help='Path to SQLite database')
parser.add argument ('question', type=str, help='A question to answer')
args = parser.parse_args()

1lm = ChatOpenAI (@ Creates an LLM client
temperature=0, model='gpt-40')

@ Creates a database object
db = SQLDatabase.from uri(f'sqglite:///{args.dbpath}"')

extra tools = load tools © Adds aweb search tool
['serpapi'], serpapi_api_key=args.serpaikey, 1llm=11m)
agent = create_ sqgl_agent ((4] Creates the agent

1lm=11m, db=db, verbose=True,
agent_type='openai-tools',
extra_tools=extra_tools)
agent.invoke ({'input':args.question}) (5) Invokes the agent with input

10.4.4 Trying it out

Let’s see how that works in practice! Download the code for listing 10.2 from the
book’s companion website. Besides the code, you will need an SQLite database to try
the data agent. We will use the SQLite database from chapter 5, storing information
about video games (you can find the corresponding file on the book’s companion
website under the Games SQLite link).

Open the terminal, and switch to the directory containing the code. We will
assume that the database file, games.db, is located in the same directory. Run the
following code (replace [SerpAPI key] with your search key, available at https://
serpapi.com/dashboard):

python listing2.py [SerpAPI key] games.db
'What was the most sold game in 2016, and how is it played?'

You should see output like the following (the output you see may differ slightly due to
changing web content, small changes to the GPT-40 model, and a few other factors):

https://serpapi.com/dashboard
https://serpapi.com/dashboard

196

CHAPTER 10 Software frameworks

[Im> Entering new SQL Agent Executor chain...[Om
[32;1m[1;3m

@ The agent retrieves the list of tables.
Invoking: ‘sgl db list tables' with ‘{'tool input': ''}®
[Om[38;5;200m[1;3mgames [Om[32;1m[1;3m

@ The agent retrieves the table schema.
Invoking: ‘sgl_db_schema‘' with ‘{'table names': 'games'}"

[Om[33;1m[1;3m
CREATE TABLE games (
rank INTEGER,
name TEXT,
platform TEXT,
year INTEGER,
genre TEXT,
publisher TEXT,
americasales NUMERIC,
eusales NUMERIC,
japansales NUMERIC,
othersales NUMERIC,
globalsales NUMERIC
)

/*

3 rows from the games table:

rank name platform year genre publisher

americasales eusales japansales othersales globalsales

1 Wii Sports Wii 2006 Sports Nintendo 41.4900000000
29.0200000000 3.7700000000 8.4600000000 82.7400000000

2 Super Mario Bros. NES 1985 Platform Nintendo 29.0800000000
3.5800000000 6.8100000000 0.7700000000 40.2400000000

3 Mario Kart Wii Wii 2008 Racing Nintendo 15.8500000000
12.8800000000 3.7500000000 3.3100000000 35.8200000000

*/[0m[32;1m[1;3m

© The agent verifies the SQL query.

Invoking: ‘sql db query checker' with ‘{'query': 'SELECT name
FROM games WHERE year = 2016 ORDER BY globalsales DESC LIMIT 1'}‘
responded: The games table contains the information we need.

I will query for the game with the highest global sales in 2016.

[Om[36;1m[1;3mSELECT name FROM games WHERE year = 2016
ORDER BY globalsales DESC LIMIT 1[0m[32;1m[1;3m

O The agent queries for the top game.

Invoking: ‘sql db query' with ‘{'query': 'SELECT name
FROM games WHERE year = 2016 ORDER BY globalsales DESC LIMIT 1'}‘

[Om[36;1m[1;3m[('FIFA 17',)] [Om[32;1Im[1;3m

10.4 Building an agent for data analysis 197

©O The agent searches the web for FIFA 17.

Invoking: ‘Search' with ‘How to play FIFA 17°

[Om[33;1m[1;3m["A Beginner's Guide To Complete FIFA 17 Domination ... The
main steps you should take are to jump right in with a quick play game.

EA Sports FIFA ...", 'Play FIFA 17 up to 5 days before launch for a full

10 hours when you join EA Access on Xbox One and Origin Access on PC.',

"1l. Shield the ball in 360 degrees - 2. Use Driven Shots and Driven Headers

3. Use set piece upgrades to score with style - 4. Make Fifa 17's ...",
'Play FIFA 17 as much as you want with EA Access or Origin Access

for only $4.99 per month. Now available in The Vault.',

'Cautiously Start An Online Match. Score Early After Some Self-Proclaimed
Beautiful Build Up Play. Concede 4 Goals In A Row And Convince ...',
'"FIFA 17 TUTORIALS & ULTIMATE TEAM X

Twitter: https://twitter.com/KrasiFIFA K

Instagram: http://instagram.com/KrasiFIFA How I record my ...',

"Draft mode is another way to play FIFA Ultimate Team,

giving you the ability to play with Players you don't own.

You'll have the opportunity to draft a random ..."]

@ The agent formulates the final answer.

[Om[32;1m[1;3mThe most sold game in 2016 was FIFA 17.
To play FIFA 17, you can follow these steps:

Jump right in with a quick play game.

Shield the ball in 360 degrees.

Use Driven Shots and Driven Headers.

Use set piece upgrades to score with style.

Start an online match cautiously.

Score early after some self-proclaimed beautiful build-up play.

N o oW

Draft mode is another way to play FIFA Ultimate Team,
giving you the ability to play with players you don't own.
You'll have the opportunity to draft a random team.

Remember, practice makes perfect! [Om

[1m> Finished chain. [Om

Remember that we switched the agent’s output to verbose mode. That means the
output contains a full log of tools invoked by the agent, as well as the agent’s reasoning
process. Let’s take a closer look at the output to see what happened.

First, the agent retrieves a list of the tables available in the relational database
(using sql_db_list_tables) (@). Clearly, that’s a reasonable step when confronted
with a new database. The result of the tool invocation reveals that the database
contains only a single table (called games). The agent becomes “curious” about the
table contents. It invokes the sql_db_schema tool to get further information about
the games table (@). Note that this tool consumes input parameters, specifically the
name of the table to investigate. The log shows the values of all input parameters for
each tool invocation.

198

10.5

CHAPTER 10 Software frameworks

The invocation of the sql_db_schema tool returns the SQL command that was
used to create the games table, together with a small sample of the table’s content.
Next, the agent considers an SQL query to retrieve relevant information about the
input question (“What was the most sold game in 2016 and how is it played?”). In
the first step, it validates that the following query is syntactically correct by invoking
the sql_db_query checker tool (@):

SELECT name FROM games WHERE year = 2016 ORDER BY globalsales DESC LIMIT 1

At the same time, the agent uses the opportunity to “reflect” on the usefulness of the
query under consideration, as evidenced by the output “The games table contains the
information we need. I will query for the game with the highest global sales in 2016.”
It may seem strange that a language model can benefit from this type of monologue
instead of writing out tool invocations directly. Yet it has been shown that enabling
agents to explicitly reason about the problem at hand and the steps they are taking
to solve it can improve their performance [1]. That’s what’s happening here as well.

Finally, the agent decides to use the previously validated query to retrieve informa-
tion from the database, using the sql_db_guery tool (@). The SQL query returns
the game that generated the most revenue in 2016: FIFA 17, a soccer simulation
produced by Electronic Arts. But the input question asks for more than that: “What
was the most sold game in 2016 and how is it played?” The second part of the question
cannot be answered from database content. To its credit, the agent realizes that and
tries to access the web instead: it issues a web search request using the Search tool
for the search string “How to play FIFA 17” (@). Note that the agent was able to
automatically formulate a suitable search string from the result of the SQL query
and the input question. The result of the web search is a collection of text snippets
(shown in the output) that contain information about how to play FIFA 2017.

Finally, the agent uses the information returned by the web search (in combination
with information from the SQL database) to formulate a final answer (@). The final
answer identifies FIFA 17 as the most popular game in 2016 and contains detailed
instructions for how to play it well. We have seen that the agent can perform a
complex sequence of tool invocations to find the desired answer without having to
specify the process to follow by hand. If you’re interested, try querying the agent
with a few more, possibly more complicated, questions and see whether it can answer
them as well.

Adding custom tools

So far, we have used standard tools offered by LangChain for the most common use
cases. What happens if we have specialized requirements? For example, say you want
to make a data source accessible via a custom API, or you have specialized analysis
functions that an agent can apply to your data. In those cases, you can define your
own custom tools and make them accessible to a LangChain agent.

10.5 Adding custom tools 199

10.5.1 The currency converter

In the last section, we analyzed a data set about video game sales. The original data
reports sales values in US dollars. What about other currencies? To enable agents to
reason about game sales using multiple currencies, we will add a currency-converter
tool. Given an amount in US dollars as input, together with the name of a target
currency, this tool returns the equivalent value in the target currency.

Listing 10.3 shows how to add the currency-converter tool to our data agent. At its
core, a tool is nothing but a Python function. Our currency converter is implemented
by the convert_currency function (@). How does LangChain know that we want to
turn the function into a tool? That’s done by the etool decorator (@), which needs
to directly precede the function name. Typically, we do not have to specify types for
parameters and return values of Python functions (even though it does improve the
readability of your code). If you plan to turn a function into a tool, however, you
should specify all these types. The reason is as follows: to use your function properly
as a tool, the agent needs to invoke it with parameters of the right type. All types
you specify in the function header will be made accessible to the agent as part of the
description of your tool. Hence, associating parameters with types helps your agent
avoid unnecessary invocation errors.

Besides parameter types, the agent should know a little about what your tool can
accomplish. The first important piece of information is the name of your function.
By default, your tool will be named after your function. Don’t call your function xyz,
because that will make it very hard to understand what’s going on! The name of
the function in listing 10.3, convert_currency, should make it pretty clear what the
function does. Similarly, the names of the input parameters, USD_amount (of type
float) and currency (of type str), are pretty self-explanatory (which is good!). The
function output is a converted amount in the target currency or an error message if
the requested target currency is not supported (that’s why the output type is a Union
of string and float values). As a rule of thumb, if you plan to use a Python function as
a tool, write it the same way you would to enable human coders to understand your
function without reading its code in detail.

In addition to the names of the function and its parameters, the agent “sees”
the function documentation (@). Again, make sure your documentation is well
structured, and explain the semantics of your tool and associated parameters. In
this case, the documentation describes the function of the tool, the semantics of
the input parameters (even with an example of an admissible value for the second
parameter), and the output semantics.

The convert currency function uses a small database of currencies with associa-
ted conversion factors. For instance, it contains conversion factors for euros and
yen but not many other currencies. If you're creating a tool for your agent, take
into account cases in which the agent does not use the tool properly. This may
happen if the tool description is incomplete or if the language model makes a mi-
stake (which happens even to state-of-the-art language models). In this case, we’re

200

CHAPTER 10 Software frameworks

adding specialized handling for the case that the target currency is not supported
(i.e., a corresponding conversion factor is missing) (@). If the target currency is not
supported, the function returns a helpful error message that contains the full set
of supported currencies. This helps the agent to restrict the parameter to the set of
admissible options for the following invocations. If the target currency is supported,
the function returns the converted amount (@).

Listing 10.3 Data-analysis agent with currency-converter tool

import argparse

from langchain.agents.load tools import load tools

from langchain.tools import tool

from langchain community.utilities.sql database import SQLDatabase

from langchain community.agent toolkits.sqgl.base import create sql agent
from langchain openai import ChatOpenAI

from typing import Union

@tool @ Turns the function into a tool

@ Function signature with types

def convert currency(USD_amount: float, currency: str) -> Union[float, str]:

© Function documentation

"nv Converts an amount in US dollars to another currency.

Args:

USD_amount: amount in US dollars.

currency: name of target currency (e.g., "Yen").
Returns:

input amount in target currency.

mounon
conversion factors = {
'Euro':0.93, 'Yen':151.28, 'Yun':0.14,
"Pound':1.26, 'Won':0.00074, 'Rupee':0.012}
if currency not in conversion factors:
O Helpful error message for the agent

error_message = (

f'Unknown currency: {currency}!"

f'Use one of {conversion factors.keys()}')
return error message

© Converts and returns the result
conversion_factor = conversion_factors[currency]
converted amount = USD_amount * conversion factor
return converted_ amount

if name == '_ main ':

parser = argparse.ArgumentParser ()

10.5.2

10.5 Adding custom tools 201

parser.add_argument ('serpaikey', type=str, help='SERP API access key')
parser.add argument ('dbpath', type=str, help='Path to SQLite database')
parser.add_argument ('question', type=str, help='A question to answer')
args = parser.parse_args()

1lm = ChatOpenAI (
temperature=0, model='gpt-40')
db = SQLDatabase.from uri(f'sqglite:///{args.dbpath}"')
extra tools = load tools(
['serpapi'], serpapi_api_key=args.serpaikey, 1llm=11m)
@ Adds the currency-converter tool
extra_tools.append (convert currency)
agent = create sqgl agent (
1lm=11m, db=db, verbose=True,
agent_type='openai-tools',
extra_ tools=extra tools)
agent.invoke ({'input':args.question})

After creating a tool based on a Python function, we just need to make the tool
available to our agent. Listing 10.3 creates almost the same agent as listing 10.2, with
the only difference being that we add the currency-converter tool (@). Because we’re
using the SQL agent again, the converter tool and the web search tool are inserted
into the list of extra tools (added on top of the standard tools for SQL access that
are automatically provided to the agent). By default, the tool name equals the name
of the function it is based on. Hence, we’re simply adding convert_currency to the
list of extra tools (@) to enhance the agent with currency conversion abilities.

Trying it out

Let’s see whether our agent is able to use our newly added tool! Download the code
for listing 10.3 from the book’s companion website. You can use the same database
file as before (and assume that the games.db file is located in the same folder as the
code). Then, open the terminal and execute the following code (substituting your
SerpAPI access key for [SerpAPI keyl):

python listing3.py [SerpAPI key] games.db 'What revenue was generated by
computer games in 20157 How much is it in Yen?'

Clearly, answering that question requires the currency-converter tool. When running
the code, you will see output like the following:

[lm> Entering new SQL Agent Executor chain...[Om
[32;1m[1;3m

@ The agent retrieves the database tables.
Invoking: ‘sgl db list tables' with ‘'tool input': ''®
[Om[38;5;200m[1;3mgames [Om[32;1m[1;3m

@ The agent queries for the table schema.

Invoking: ‘sgl_db_schema' with ‘'table names': 'games'®

CHAPTER 10 Software frameworks

[Om[33;1Im[1;3m
CREATE TABLE games (
rank INTEGER,
name TEXT,
platform TEXT,
year INTEGER,
genre TEXT,
publisher TEXT,
americasales NUMERIC,
eusales NUMERIC,
japansales NUMERIC,
othersales NUMERIC,
globalsales NUMERIC
)

/*

3 rows from the games table:

rank name platform year genre publisher americasales
eusales japansales othersales globalsales

1 Wii Sports Wii 2006 Sports Nintendo 41.4900000000
29.0200000000 3.7700000000 8.4600000000 82.7400000000

2 Super Mario Bros. NES 1985 Platform Nintendo 29.0800000000
3.5800000000 6.8100000000 0.7700000000 40.2400000000

3 Mario Kart Wii Wii 2008 Racing Nintendo 15.8500000000
12.8800000000 3.7900000000 3.3100000000 35.8200000000

*/[0m[32;1m[1;3m

© The agent verifies the SQL query.

Invoking: ‘sql_db query checker' with ‘{'query': 'SELECT SUM(globalsales)
total revenue FROM games WHERE year = 2015'}

responded: The "games" table contains the information we need.

The "globalsales" column represents the global revenue generated by

each game. We can sum this column for the games released in 2015 to

get the total revenue. Let's write and check the SQL query.

[Om[36;1m[1;3mSELECT SUM(globalsales) as total_revenue
FROM games WHERE year = 2015[0m[32;1m[1;3m

O The agent queries for sales in 2015.

Invoking: ‘sgl db query' with ‘{'query': 'SELECT SUM(globalsales) as
total revenue FROM games WHERE year = 2015'}"

[Om[36;1m[1;3m[(264.43999999999795,)] [Om[32;1m[1;3m

O The agent converts the currencies.

Invoking: ‘convert currency' with ‘{'USD_amount':
264.43999999999795, ‘'currency': 'Yen'}®

[Om[38;5;200m[1;3m40004.48319999969[0m[32;1m[1;3m

O The agent formulates the final answer.

The total revenue generated by computer games in 2015

as

10.6

10.6.1

10.6 Indexing multimodal data with Llamalndex 203

was approximately $264.44 million.
In Japanese Yen, this is approximately ¥40,004,483,200. [0Om

[lm> Finished chain. [Om

Similarly to before, the agent first explores the database by retrieving the set of
tables (@) and then, after finding out that the database only contains a single table,
retrieving the schema for that table (@). Correctly, the agent infers that the database
contains useful information about the input question and first validates (€) and then
executes (@) a corresponding SQL query. The SQL query returns the total value of
computer game sales in 2015, expressed in US dollars. To answer the final part of the
question (“How much is it in Yen?”), the agent then applies the currency-converter
tool (@). Note that the agent chooses appropriate values for the two input parameters
based on the function description and types. Finally, the agent formulates the answer
to the input question (@).

Indexing multimodal data with Llamalndex

LangChain is by no means the only framework that makes it easier to use language
models for data analysis. In this section, we discuss another framework that has
recently appeared and is quickly gaining popularity: Llamalndex.

Overview

Llamalndex shines for use cases where language models need to access large collec-
tions of data, possibly integrating various data types. In such cases, it is generally not
advisable (or even possible) to directly feed all the data into the language model.
Instead, we need a mechanism that quickly identifies relevant data for a given task,
passing only relevant data to the language model. As the name suggests, Llamalndex
indexes data to quickly identify relevant subsets. More precisely, Llamalndex assoc-
iates pieces of data (e.g., chunks of text) with embedding vectors. We briefly discus-
sed embedding vectors in chapter 4. In short, an embedding vector represents the
semantics of text as a vector calculated by a language model. If two documents have
similar embedding vectors (the distance between the vectors is small), we assume
that they discuss similar topics.

A typical Llamalndex data-processing pipeline entails the following steps. First, it
loads data, possibly in various formats, and performs preprocessing. For example,
preprocessing may entail dividing long text documents into smaller chunks that are
more convenient to handle. Next, Llamalndex indexes the data. As discussed before,
this means associating data chunks with embedding vectors. By default, Llamalndex
uses fairly small language models (e.g., OpenAl’s ada models) to calculate embedding
vectors. This makes the indexing step cheap. Furthermore, Llamalndex can store
the generated index (the embedding vectors) on disk to avoid having to regenerate
them for each new task.

Llamalndex offers support for various use cases based on the generated index.
For instance, it can use indexed data to answer natural language questions. Given a

204

10.6.2

CHAPTER 10 Software frameworks

question as input, it first calculates an embedding vector for the question text. Then it
compares the vector representing the question to precalculated vectors representing
data chunks. It identifies the data items with the most similar vectors. The associated
data is included in the prompt, together with the input question. The goal is to
generate an answer to the question, exploiting relevant data as context. Whereas
small models are used for indexing, we typically use larger models to generate the
final reply. Figure 10.4 illustrates this data-processing pipeline.

Data
(Load data)
(Index data)
Question—»(Retrieve data)
(Generate answer)

Answer

Figure 10.4 Primary steps of a typical Llamalndex data-processing pipeline. Llamalndex loads and
indexes data to enable fast retrieval. Given a question, Llamalndex identifies relevant data items and
submits them, together with the input question, to a language model to generate an answer.

Installing Llamalndex

Let’s implement the pipeline from the last section in Python. To use Llamalndex,
we first have to install a few packages. Go to your terminal, and run the following
command:

pip install llama-index==0.10.25

That will set you up with Llamalndex’s core packages. However, you will use
Llamalndex to analyze a diverse collection of data formats. To enable Llamaln-
dex to properly access and parse all of them, you need to install a few additional
packages. Run the following commands in your terminal:

pip install torch==2.1.2

pip install transformers==4.36.0
pip install python-pptx==0.6.23
pip install Pillow==10.2.0

These libraries are necessary to analyze .pdf documents and PowerPoint presentations,
all of which we will need for the following project.

10.6 Indexing multimodal data with Llamalndex 205

10.6.3 Implementing a simple question-answering system

You’re back at Banana and confronted with a challenging problem: being a global
company, Banana has many different units. Your boss wants you to analyze data
from different units, for example, to compare their performance. However, different
units have widely varying preferences in terms of data formats. Some units publish
their results as simple text documents, whereas others regularly turn out elaborate
PowerPoint presentations. How do you integrate all those different data formats?
Fortunately, Llamalndex makes that easy.

Look at listing 10.4: in just a few lines of Python code, it handles the task. The
code accepts the following input parameters:

A link to a data repository. This repository may contain files of various types.

A question to answer. Llamalndex will use the data in the repository to answer
it.

After parsing those parameters from the command line (@), we load data from the
input repository (@). Fortunately, Llamalndex makes this step very straightforward:
no need to add handling for different file types and so on. Instead, passing the
directory path is sufficient. Next, we index the data we just loaded (). By default,
Llamalndex uses OpenAl’s ada models to calculate embedding vectors. Data conver-
sions and chunking (e.g., splitting large text documents into pieces small enough to
be processed by OpenAlI’s ada models) are all handled automatically. Now we create
a query engine on top of the index (@). This engine will automatically retrieve data
related to an input question using the index. Finally, we use the previously generated
engine to answer the input question (@) and print the result.

import argparse
import openai

from llama_index.core import VectorStoreIndex, SimpleDirectoryReader

if name == ' main ':

@ Parses the command-line parameters

parser = argparse.ArgumentParser ()

parser.add argument ('datadir', type=str, help='Path to data directory')
parser.add_argument ('question', type=str, help='A question to answer')
args = parser.parse_args ()

@ Loads data from the directory
documents = SimpleDirectoryReader (args.datadir) .load data()

© Indexes the data

index = VectorStoreIndex.from documents (documents)

O Enables querying on the index

engine = index.as_query engine()

206

10.6.4

10.7

CHAPTER 10 Software frameworks

9 Generates the answer
answer = engine.query (args.question)
print (answer)

Although Llamalndex offers various ways to configure and specialize each step of
this pipeline (and to create other pipelines), using the default settings in each step
leads to particularly concise code.

Trying it out

Let’s try our pipeline using some example data. You can download listing 10.4 from
the book’s companion website. Also download the bananareports.zip file from the
website, and unzip it in the same folder as the code (use the Banana Reports link).
Look inside the folder: you will find (short) business reports in text, .pdf documents,
and PowerPoint presentations. Time to answer a few questions! Open your terminal,
and change to the directory containing the code and the bananareports folder (after
unzipping). Now run the following command:

python listing4.py bananareports 'How much did the Plantain unit make
in 20237

You should see output like the following:

The Plantain unit made 30 million USD in 2023.

Have a look at the corresponding file. You will find that the Plantain unit did indeed
make 30 million USD. Try asking for the other units (Pisang Raja and Cavendish);
you should see the correct results. You can even try more complex questions—such
as “Which unit made the most in 2023?”—requiring a comparison of different files.
Again, the system should be able to find an accurate answer.

Concluding remarks

LangChain and Llamalndex are two popular frameworks for using language models.
You have seen that implementing even complex applications, like those based on
agents, is fairly quick when using those frameworks. LangChain and Llamalndex
have overlapping functionality: for example, both frameworks provide support for
implementing agents based on language models. Llamalndex particularly shines in
scenarios that follow the high-level template we saw in the previous section (providing
functionality on top of data indexes). LangChain has a more general focus on
supporting developers in building complex applications using language models.

Both frameworks are relatively young at the time of writing, so the previous
characterizations may not hold for future versions. In addition, their interfaces
are evolving quickly, and running with the newest framework versions may require
code changes. If your application does not require complex logic, you may consider
using lower-level libraries such as the one by OpenAl.

Of course, this chapter does not cover these two frameworks in much detail. The
intent is to give you an impression of what the frameworks can do for you, enabling
you to make informed choices about which frameworks to study in more depth.

Summary 207

Summary

LangChain and Llamalndex enable complex applications on top of language
models.

LangChain and Llamalndex make it easy to create agents. Agents use language
models to control invocations of various tools (standard tools as well as custom
tools). They can solve complex tasks if given access to suitable tools.

In LangChain, use the etool decorator to turn functions into tools.
Llamalndex indexes various data types by creating embedding vectors.
Llamalndex makes it easy to explore and query indexed data.

References

[1] Wei,]., Wang, X., Schuurmans, D., et al. (2022). Chain-of-Thought Prompting
Elicits Reasoning in Large Language Models. Advances in Neural Information
Processing Systems 35, 24824-24837.

mdex

A

agents
agent-driven task execution 189-190
defining an agent in LangChain 193-194
tool selection for agents 190-191
Anthropic
Claude 3.5 model 143
Constitutional AT 143
creating an Anthropic account 144
Python APIsetup 145
using Claude for chat completions 145
audio data
automated speech processing 120
speech generation 133-134
supported audio formats 122
122-123
using Python to open and process audio 123

transcribing speech with Whisper
See alsovoice commands, processing

BananaDB example database 30-31

Cc

ChatGPT API, accessing
API key generation 41

billing and subscription 41
managing secret keys 41

setting the API key in an environment
variable 41

ChatGPT, interface
conversation history 21
inputfield 20
model selection 20
New Chat button 20-21
Regenerate button 20
ChatGPT, limitations of
hallucinations 21
randomized responses 22
ChatGPT, processing data with
direct textanalysis 21-27
processing tabular data 27-28
SQL query generation 31-35
ChatGPT, processing tables with

generating data insights in the web interface
28-29
limitations of web-based processing 29
uploading CSV files 28
ChatGPT, processing text with
automated customer replies 25-26
categorizing reviews 23-24

extracting information 24

209

210

sentimentanalysis 24
summarizing reviews 24-25

See also data analysis and extraction; text data,
analyzing and classifying

clustering

calculating embeddings for clustering 70-72

clustering text documents 70

clustering vectors 72

k-means algorithm 72
Cohere

Command R+ model 146-147

enabling web search connectors 147

installing Cohere’s Python library 147

Retrieval-Augmented Generation (RAG) 147

using Cohere for factual question answering 148
cost minimization

model selection 13, 164-166

optimizing model configuration 14, 160-164

promptengineering 15, 166-169
customization parameters

frequency penalty 47-48

logitbias 48

max tokens 46-47

presence penalty 47

stop sequences 47

temperature 48-49

top_p parameter 49
Cypher query language

basic structure 95-97

countingnodes 97

matching graph patterns 96

retrieving node properties 96

translating natural language to Cypher 97-98

D

data analysis and extraction
automating data analysis 192-193
classification 53-61
creating classification prompts 55-56
creating extraction prompts 62-63
extracting information 61-69
grouping text documents 69-74
postprocessing extracted text 64-65
querying structured data 83,193
retrieving data with Llamalndex 204

transcribing audio files 122-123

INDEX

using web search for data retrieval 194
visual question answering 102
See also ChatGPT, processing text with; text data,
analyzing and classifying
data formats
audio 5,120-121
graphs 5,93-94
images 5,101-102
structured vs. unstructured data 56
tables 5, 76-77
text b,52-53
videos 5,101-102
dependencies, installing

installing jsonlines to process JSON-lines
files 175

installing OpenCV for image processing 102
installing pandas for table processing 53
installing playsound for audio playback 121
installing requests for API calls 121
installing requests library for API calls 102
installing scikit-learn for clustering 53
installing scipy for audio processing 121
installing sounddevice for recording 121

E

embeddings
70-72
clustering text documents using
embeddings 72-74
definition of 70
indexing datavia embeddings 203-204
environment setup
checking Python version 39
installing pip 39
installing Python 39
using Google Colab 39—40
external data-processing tools

calculating embeddings

graph data managementsystems 11

relational database management systems
(RDBMS) 11-12

F

fine-tuning
advantages of 174
checking for status of fine-tuning job 179

cost considerations 14-15

definition of 43

generating training data 175-176
model ownership 43

starting a fine-tuning job 177-178

INDEX

using fine-tuned models 179-181
G
Google

Gemini model 149

installing Google’s Python library 150
integrating Gemini with Google tools 150
using Gemini for multimodal input 150
GPT models, processing text with

creating prompts 55-56
57
sending prompts to the model 56-57

See also ChatGPT, processing text with; data
analysis and extraction

retry mechanisms for API calls

211

automated face recognition 106-107
automated video captioning 114-116
base64 encoding for images 108
comparing images 108-109

converting image files for GPT-4o0 108-109
creating image-based prompts 103-104
extracting frames for analysis 115-116
image classification with GPT40 105-106
image processing with GPT-4o 102-104
sending images to OpenAl 110

storing images in base64 format 108

UTEF-8 encoding for image transmission
108-109

video analysisvl14-118

See alsovideo frames, encoding; video titles,
generating

information extraction
extracting information from text 61-63

GPT-4o generating prompts for extraction 63-64
multimodal input handling 103 postprocessing extracted data 64-65
processing costs for images 106
using OpenAlI’s API for image analysis 110 K
using Python requests for API calls 110 k-means clustering

graph data algorithm overview 72
definition of ~93-94 implementation in Python 72
graph data managementsystem 11 vector-based document clustering 73
graph query processing 94
See alsoNeo4j database system L

H LangChain

Holistic Evaluation of Language Models (HELM) age?t-dﬁven execution 189-192
benchmarking different models 164-166 chains 185
definition of 13 creating a classification chain 186-187
See alsoHugging Face; language models; models, defininganagentin 193-194

selecting and configuring; OpenAl models defining prompt templates 186

Hugging Face installing 184
accessing open-source models 151-152 language models
filtering models by task 152 biasing token output 48,161

installing the Transformers library 153
running models locally 153
sentiment analysis with Roberta 154

See alsolanguage models; models, selecting and
configuring; OpenAl models

images and videos, analyzing and processing

answering questions aboutimages 103-104

comparing models and pricingv142
defining GPT 4

external toolsand 11-12

fine-tuning for specific tasks 173-174
generative capabilities 3

multimodal models 4-5

OpenAl Python library 8, 38
OpenAlweb interface 8, 18-19
optimizing for cost efficiency 156-157

212

pretraining 4

Transformer architecture 4

as universal task solvers 6

using directlyon data 9-10

10-12

See also Hugging Face; models, selecting and
configuring; OpenAl models

using on data via external tools

Llamalndex

creating an index from documents 205
embedding vectors for data retrieval = 203-204
installing 204

querying indexed data 205-206

See also SQL and structured data

logit bias

defining token biases 48
use for classification 161-162

messages

assistantrole 44
message structure 43
systemrole 44
userrole 44

models, selecting and configuring

balancing costand performance 156-157
comparing GPT-3.5 Turbo and GPT4 165-166
46-50

151-152
installing dependencies for local inference 153
4243

customization parameters

exploring open-source models

listing available OpenAl models
OpenAlmodels 13

13,142
randomization control 48-49

providers

retrieving model performance benchmarks 13

selecting optimal models for specific tasks

164-166
termination conditions 4647

token selection bias 48

tuning models for specific tasks 160-164
See also Hugging Face; language models; OpenAl
models
N
natural language query interfaces
building text-to-SQL translators 83-86

building text-to-Cypher translators 97-100

INDEX

See alsorelational database management systems
(RDBMS); SQL and structured data

Neo4j database system
creating a database instance 94-95
Cypher query language 95-97
See also graph data

o

OpenAl alternatives
Anthropic’s Claude 143-146
Cohere 146-149
Google 149-151
Hugging Face 151-155
OpenAl'models
Adamodel 71
answering visual questions 103-104
automating transcription 122-123
chat completion 43-45
chat completion for classification 53-55
chat completion for information extraction
61-63
configuring model parameters 46—49
creating a client object 44

creating OpenAl-based LangChain agents
193-194

defining chat history 44
embeddings for clustering 71
97-99
133-134
generating SQL queries 83-84
GPT-3.5 Turbo model 157
GPT-40omodel 3
optimizing cost 157
retrieving model metadata 4243
106-107
text-to-speech models 133

generating Cypher queries
generating speech from text

tagging people in images

132-133
transmitting locally stored images 110
Whisper model 122

See alsoHugging Face; language models; models,
selecting and configuring

OpenAl Python library
creating embeddings 70-72
chat completion 43-46
customizing model behavior 46-50
installation 40-42
overview of 38-39

translating spoken language

prerequisites 39

processing images using chat completions
103-104

sending images via API requests 110

setting environment variables 41

token usage statistics 46

using GPT models for classification 54

using GPT models for extraction 61
OpenAl’s Whisper model

definition of 122

pricing 124

use for transcription 123
OpenCV

installation 102

extracting images fromvideo 115-116

generating titles forvideos 116-118
output control

limiting output textlength 4647, 163

restricting generated tokens 47-48, 161-163

tuning degree of randomization 48-49

P

processing costs, token-based pricing 46
prompt design and engineering
adding classification examples 167
classification prompt templates 55
extraction prompt templates 63
few=shotlearning 7,166-167
impact on model accuracy 169
importance of clear instructions 15
minimizing redundancy in prompts 167
prompt-based tuning 167
purchasing templates 15
specifying output format 23
text-to-SQL prompt templates 83-84
See alsoprompting
prompting
definition of 6
few-shotlearning 7
zero-shotlearning 7
See also prompt design and engineering

R

randomization control
temperature setting 49
top_p sampling 49

INDEX 213

relational database management systems (RDBMS)
definition of 11
SQLite 30,79
Structured Query Language (SQL) and 81-83
tabulardata 5

See also BananaDB example database; SQL and
structured data; SQLite database

Retrieval-Augmented Generation (RAG)
definition and purpose of 147
using external data sources for grounding 146

S

software frameworks
LangChain 15,184
Llamalndex 15,203

speech generation and translation

automating language translation 132-133
converting text to speech 133-134
creating translation prompts 137
generating speech from translated text 134-137
selecting speech models and configuration 134
speech generation pricing 134
See also ChatGPT, processing text with; data
analysis and extraction

SQL and structured data
automated data analysis via agents 192-193
building a voice-driven SQL interface 124-126
building text-to-SQL translators = 83
ChatGPT as a translator for SQL. 30-36
defining structured data 5
executing queries in SQLite 31-32
extracting database schema 88-89
Google Colab for SQL execution 31
graphvs. tabular data 93-94
processing SQL queries using Python ~ 87-88
querying tabular and graph data 77-78
RDBMS and SQL 30
SQL basics 81-83
structured vs. unstructured data 5-6
text-to-SQL queryinterface 10-12, 83-86
See also BananaDB example database; relational

database management systems (RDBMS);
SQLite database

SQLite database
creating an SQLite database 80
defining table structure 80
executing queries in SQLite 30-31, 87-88

214

importing CSV data into SQLite 80
overview of 30

processing SQL queries 81-82
retrieving schema from SQLite 88-89
using SQLite with text queries 87-91
using SQLite with voice queries 124-131

See also BananaDB example database; relational
database management systems (RDBMS);
SQL and structured data

T

text data, analyzing and classifying
classifying text 54
clustering documents 70
creating classification prompts 55
creating extraction prompts 63-64
extracting structured data 61

See also ChatGPT, processing text with; data
analysis and extraction

tokens
controlling outputlength 46
cost considerations 13
definition of 13
finding token IDs 161-162
GPT tokenizer 48
tools
adding custom tools in LangChain 199-201
adding standard tools in LangChain 194
definition of 190

INDEX

integrating tools with agents 190
prompt templates for tool integration 191-192

\

vectors, embedding
clustering text documents 70
embedding generation models 71
extracting vectors from embedding response 71
retrieval applications 75, 203-204
use cases 74-75

videos
extracting frames using OpenCV 115-116
preparing video frames for GPT-4o0 116
generating concise video descriptions 114-118

See alsoimages and videos, analyzing and
processing

voice commands, processing
building a voice-driven SQL interface 124-126
recording voice input 126-127
sample rate and frame settings 127
storing audio recordings 127
See alsoaudio data

w

web interface, accessing
account creation 18-19
login process 18-19
OpenAl subscription options 19

PYTHON/DATA

Data Analysis with LLMs

[mmanuel Trummer

arge Language Models (LLMs) can streamline and acc-
Lelerate almost any data science task. Master the techniques

in this book, and you’ll be able to analyze large amounts
of text, tabular and graph data, images, videos, and more with
clear natural language prompts and a few lines of Python

code.

Data Analysis with LLMs shows you exactly how to integrate
generative Al into your day-to-day work as a data scientist. In
it, Cornell professor Immanuel Trummer guides you through
a series of engaging projects that introduce OpenAI’s Python
library, tools like LangChain and Llamalndex, and LLMs from
Anthropic, Cohere, and Hugging Face. As you go, you'll use
Al to query structured and unstructured data, analyze sound
and images, and optimize the cost and quality of your data
analysis process.

What's Inside

¢ Classify, cluster, transform, and query multimodal data

¢ Build natural language query interfaces over structured
data sources

¢ Create LLM-based agents for autonomous data analysis

e Prompt engineering and model configuration

For data scientists and data analysts who know the basics of

Python.

Immanvel Trummer is an associate professor of computer
science at Cornell University and a member of the Cornell
Database Group.

The technical editor on this book was Timothy Andrew
Roberts.

For print book owners, all digital formats are free:
https://www.manning.com/freebook

¢¢Comprehensive, insightful,
and packed with hands-on
guidance. A must-read!??

—Oren Etzioni
Allen Institute of Al

¢¢Goes into the deep and
fascinating areas that other
books gloss over. It will level
you up fast.”?
—Andrew Carr, Cartwheel

¢¢Helps you make LLMs an
indispensable tool to process
data of all types and uncover
valuable insights with ease.??

—Aditya Parameswaran
University of California, Berkeley

CCA valuable resource to
leverage LLMs for
multimodal data analysis.??

—Sumit Bhattacharyya
TELUS Health

e ¢
See first p&

ISBN-13: 978-1-63343-764-7

9

	brief contents
	contents
	preface
	acknowledgments
	about this book
	Who should read this book?
	How this book is organized: A road map
	About the code
	liveBook discussion forum

	about the author
	about the cover illustration
	Part 1 Introducing language models
	1 Analyzing data with large language models
	1.1 What can language models do?
	1.2 What you will learn
	1.3 How to use language models
	1.3.1 Prompting
	1.3.2 Example prompt
	1.3.3 Interfaces

	1.4 Using language models for data analysis
	1.4.1 Using language models directly on data
	1.4.2 Data analysis via external tools

	1.5 Minimizing costs
	1.5.1 Picking the best model
	1.5.2 Optimally configuring models
	1.5.3 Prompt engineering

	1.6 Advanced software frameworks and agents
	Summary

	2 Chatting with ChatGPT
	2.1 Accessing the web interface
	2.2 Making introductions
	2.3 Processing text with ChatGPT
	2.4 Processing tables with ChatGPT
	2.4.1 Processing tables in the web interface
	2.4.2 Processing tables on your platform

	Summary
	References

	Part 2 Data analysis with language models
	3 The OpenAI Python library
	3.1 Prerequisites
	3.2 Installing OpenAI's Python library
	3.3 Listing available models
	3.4 Chat completion
	3.5 Customizing model behavior
	3.5.1 Configuring termination conditions
	3.5.2 Configuring output generation
	3.5.3 Configuring randomization
	3.5.4 Customization example
	3.5.5 Further parameters

	Summary

	4 Analyzing text data
	4.1 Preliminaries
	4.2 Classification
	4.2.1 Overview
	4.2.2 Creating prompts
	4.2.3 Calling the model
	4.2.4 End-to-end classification code
	4.2.5 Classifying documents
	4.2.6 Running the code
	4.2.7 Trying out variants

	4.3 Text extraction
	4.3.1 Overview
	4.3.2 Generating prompts
	4.3.3 Postprocessing
	4.3.4 End-to-end extraction code
	4.3.5 Trying it out

	4.4 Clustering
	4.4.1 Overview
	4.4.2 Calculating embeddings
	4.4.3 Clustering vectors
	4.4.4 End-to-end code for text clustering
	4.4.5 Trying it out
	4.4.6 Other use cases for embedding vectors

	Summary
	References

	5 Analyzing structured data
	5.1 Chapter outline
	5.2 A natural language query interface for analyzing game sales
	5.2.1 Setting up an SQLite database
	5.2.2 SQL basics
	5.2.3 Overview
	5.2.4 Generating prompts for text-to-SQL translation
	5.2.5 Complete code
	5.2.6 Trying it out

	5.3 A general natural language query interface
	5.3.1 Executing queries
	5.3.2 Extracting the database structure
	5.3.3 Complete code
	5.3.4 Trying it out

	5.4 A natural language query interface for graph data
	5.4.1 What is graph data?
	5.4.2 Setting up a Neo4j database
	5.4.3 The Cypher query language
	5.4.4 Translating questions to Cypher queries
	5.4.5 Generating prompts
	5.4.6 Complete code
	5.4.7 Trying it out

	Summary

	6 Analyzing images and videos
	6.1 Setup
	6.2 Answering questions about images
	6.2.1 Specifying multimodal input
	6.2.2 Code discussion
	6.2.3 Trying it out

	6.3 Tagging people in images
	6.3.1 Overview
	6.3.2 Encoding locally stored images
	6.3.3 Sending locally stored images to OpenAI
	6.3.4 The end-to-end implementation
	6.3.5 Trying it out

	6.4 Generating titles for videos
	6.4.1 Overview
	6.4.2 Encoding video frames
	6.4.3 The end-to-end implementation
	6.4.4 Trying it out

	Summary

	7 Analyzing audio data
	7.1 Preliminaries
	7.2 Transcribing audio files
	7.2.1 Transcribing speech
	7.2.2 End-to-end code
	7.2.3 Trying it out

	7.3 Querying relational data via voice
	7.3.1 Preliminaries
	7.3.2 Overview
	7.3.3 Recording audio
	7.3.4 End-to-end code
	7.3.5 Trying it out

	7.4 Speech-to-speech translation
	7.4.1 Overview
	7.4.2 Generating speech
	7.4.3 End-to-end code
	7.4.4 Trying it out

	Summary

	Part 3 Advanced topics
	8 GPT alternatives
	8.1 Anthropic
	8.1.1 Chatting with Claude
	8.1.2 Python library

	8.2 Cohere
	8.2.1 Chatting with Command R+
	8.2.2 Python library

	8.3 Google
	8.3.1 Chatting with Gemini
	8.3.2 The Python library

	8.4 Hugging Face
	8.4.1 Web platform
	8.4.2 Python library

	Summary
	References

	9 Optimizing cost and quality
	9.1 Example scenario
	9.2 Untuned classifier
	9.3 Model tuning
	9.4 Model selection
	9.5 Prompt engineering
	9.6 Tunable classifier
	9.7 Fine-tuning
	9.8 Generating training data
	9.9 Starting a fine-tuning job
	9.10 Using the fine-tuned model
	Summary

	10 Software frameworks
	10.1 LangChain
	10.2 Classifying reviews with LangChain
	10.2.1 Overview
	10.2.2 Creating a classification chain
	10.2.3 Putting it together
	10.2.4 Trying it out

	10.3 Agents: Putting the large language model into the driver's seat
	10.4 Building an agent for data analysis
	10.4.1 Overview
	10.4.2 Creating an agent with LangChain
	10.4.3 Complete code for data-analysis agent
	10.4.4 Trying it out

	10.5 Adding custom tools
	10.5.1 The currency converter
	10.5.2 Trying it out

	10.6 Indexing multimodal data with LlamaIndex
	10.6.1 Overview
	10.6.2 Installing LlamaIndex
	10.6.3 Implementing a simple question-answering system
	10.6.4 Trying it out

	10.7 Concluding remarks
	Summary
	References

	index

